Session 30

Mohamed Emary

August 3, 2024

1 CSS Layers

Layers is a new CSS concept that was introduced in 2022. It is used to declare a cascade layer
and can also be used to define the order of precedence in case of multiple cascade layers.

We can define a layer by using the @layer directive. The @layer directive can be used to define
a layer at the top of the CSS file. We can define multiple layers in a CSS file.

Consider this example:
1 | <button class="btn" id="my_btn">Click</button>

In CSS:

1 @layer one {
2 #my btn {

3 background-color: blue;
"

5}

6

7 @layer two {

8 .btn {

9 background-color: red
10 }

11 }

In the above example, we have defined two layers, one and two. The .btn class in the two layer
will override the #btn class in the one layer.

When using layers we don’t care about specificity, we only care about the order of the layers.
The layer that is defined later will override the properties of the layer that is defined earlier.
That is why the .btn class will override the #btn class in the above example.

In the example before we used the order in which the layers were written in our code. But we
can also define the order of the all the layers in the CSS file like this:

1 | @layer one, two, three;

CSS Layers

Here we are defining the order of the layers. The three layer will have the highest precedence
and the one layer will have the lowest precedence. So even if you write the three layer first
in the CSS file, and the one layer last, the three layer will still have the highest precedence
because we have defined the order of the layers.

1 @layer three {

2 button {

3 background-color: green;
a0}

5}

7 @layer one {
8 #my _btn {

9 background-color: blue
10 }

11 }

12

13 @layer two {

14 .btn {

15 background-color: red;
16 }

17}

In the above example, the three layer will have the highest precedence and will override the
styles of the one and two layers.

But what if we have a CSS rule that is not defined in any layer? In that case, in that case that
rule will override all the layers. So, if we have a rule that is not defined in any layer, it will have
the highest precedence. It’s like that rule is in a layer that is defined after all the layers.

1 | button{
2 background-color: yellow;
s}

5 @layer three {

6 #my btn {

7 background-color: blue;
s }

o}

In the above example, the button rule will override all the layers because it is not defined in
any layer.

1.1 Layer & !important

In layers, !important works the opposite way. The first layer that has the !important rule will
have the highest precedence. So, if we have a rule with !important in the one layer and a rule
with !important in the two layer, the rule in the one layer will have the highest precedence.

1 | @layer one, two, three;
2

3 @layer three {

Layers in Tailwind CSS

4 button {

5 background-color: green !important;
o}

7}

9 | @layer one {

10 button {

11 background-color: blue !important;
12 }

13 }

14
15 @layer two {
16 button {

17 background-color: red !important;
18 }

19}

20

21 button {

22 background-color: yellow !important;
23 }

In the above example, the button rule in the one layer will have the highest precedence because
it has the !important rule.

See these two images for a better understanding:

Unlayered

@layer N{ ...}

@layer...{...}

| |
| |
‘ @layer2{...} |
| |

@layer1{...}

Figure 1: Layer Precedence

Important @layer 1 { ...}

Important @layer 2 { ... }

Important @layer ... { ... }

Important @layer N { ... }

Important Unlayered

Figure 2: Important Precedence With Layers

Layers concept is used with tailwind CSS and that is what we will talk about next.

2 Layers in Tailwind CSS

When you start using Tailwind CSS, you will need to add those three lines at the beginning of
your CSS file:

Layers in Tailwind CSS

1 @tailwind base;
2 | @tailwind components;
3 | @tailwind utilities;

Those three lines are the layers in Tailwind CSS. The base layer contains the base styles, the
components layer contains the components styles, and the utilities layer contains the utility
classes.

The same rules apply to the layers in Tailwind CSS. The base layer has the lowest precedence,
the components layer has the middle precedence, and the utilities layer has the highest
precedence. That is why when you define a utility class, it will override the components and
base styles.

You can also add styles to existing layers or create new layers in Tailwind CSS. You can do that
by using the @layer directive.

1| @tailwind base;
2 | @tailwind components;
3 | @tailwind utilities;

5 @layer base {

6 button {

7 background-color: blue;
s }

9 ¥

In the above example, we have added a new style to the base layer, so any button in the HTML
file will have a blue background color unless it is overridden by a utility class. You can do the
same width the components and utilities layers.

Now you can make your own new utility classes and add them to the utilities layer.

1| @layer utilities {

2 .btn-warning {

3 background-color: orange;
a

5}

2.1 ©@apply Directive

Not only that you can also use Tailwind classes inside the @layer directive using @apply
directive.

1| @layer utilities {

2 .btn-warning {

3 Q@apply bg-orange-500 text-white rounded-md px-4 py-2;
a

5}

Now using btn-warning will be equivalent to using bg-orange-500 text-white rounded-md
px—4 py-2.

Responsive Tailwind Example

3 Qconfig Directive

You can also use the @config directive to change the configuration of Tailwind CSS. This is
useful if you have a large project and you want to apply different configurations to different
users or different parts of the project.

For example this applies a configuration file for main site:

1| @config "./tailwind.site.config.js";
2

3 | @tailwind base;

4| @tailwind components;

5 | @tailwind utilities;

And this for admins:

1| @config "./tailwind.admin.config.js";

3 | @import "tailwindcss/base";

4| @import "tailwindcss/components";

5 | @import "tailwindcss/utilities";

4 theme(), screens() Functions

theme () is a function that allows you to access the theme configuration values in Tailwind CSS

configuration file. You can use it to access the colors, fonts, spacing, and other configurations
values in the theme.

5 Responsive Tailwind Example

1| <div class="flex flex-wrap">

2 <div

3 class="shadow-1lg p-3 md:w-6/12 md:bg-red-300 md:font-mono 1lg:w-4/12">
4 <p>Lorem, ipsum dolor.</p>

5 </div>

6 <div

7 class="shadow-1g p-3 md:w-6/12 md:bg-red-300 md:font-mono lg:w-4/12">
8 <p>Lorem, ipsum dolor.</p>

9 </div>

10 <div

11 class="shadow-1lg p-3 md:w-6/12 md:bg-red-300 md:font-mono lg:w-4/12">
12 <p>Lorem, ipsum dolor.</p>

13 </div>

14 <div

15 class="shadow-1lg p-3 md:w-6/12 md:bg-red-300 md:font-mono lg:w-4/12">
16 <p>Lorem, ipsum dolor.</p>

17 </div>

18 | </div>

In the example above we have a responsive layout. The md prefix means that the style will
be applied on medium screens and larger. The 1g prefix means that the style will be applied
on large screens and larger. md:w-6/12 means that the width of the element will be 50% on

Dark Mode

medium screens and larger. md:bg-red-300 means that the background color of the element
will be red on medium screens and larger. md: font-mono means that the font of the element
will be monospace on medium screens and larger.

1lg:w-4/12 means that the width of the element will be 33.33% on large screens and larger.

You can add custom screen sizes to tailwind to the existing ones like sm, md, 1g, x1 by using
screens in the configuration file.

1| /** Otype {import('tailwindcss').Configh */

2 | /** @type {import('tatilwindcss').Config} */

3 module.exports = {

4 theme: {

5 extend: {

6 screens: {

7 'tablet': '640px',

8 // => @media (min-width: 640pxz) { ... }
9

10 'laptop': '1024px’',

11 // => @media (min-width: 1024pxz) { ... }
12

13 'desktop': '1280px',

14 // => @media (min-width: 1280px) { ... }
15 },

16 }

17 }

18 |}

So now you can use tablet, laptop, and desktop as screen sizes in your CSS in addition to
the existing ones.

You can also use arbitrary values:

1 ‘ <div class="min-[320px] :text-center max-[600px] :bg-sky-300">
2‘ <l—- ... ==
5| </div>

In the example above, the text will be centered if the screen width is at 320px or more and the
background color will be sky-300 if the screen width is 600px or less.

If you have the Tailwind VSCode extension installed, you will see the CSS values of these classes
if you hover over them.

6 Dark Mode

To use darkmode in tailwind you need to specify darkMode: 'class' in the configuration file.

1| /** Otype {import('tailwindcss').Configh */
> | module.exports = {

3 darkMode: 'class',
4 /...
5}

Tailwind Plugins

Now if you add dark class to the html element, the dark mode will be activated.
1 | <html class="dark">
To add dark mode styles, you can use the dark: prefix.

1| <div class="bg-white dark:bg-gray-800">
2 l-—— ... -=>
3 | </div>

In the example above, the background color will be white in light mode and gray-800 in dark
mode.

You can use a toggle button to switch between light and dark mode, and add even listeners in
JavaScript to toggle the dark class on the html element.

1 | <input type="checkbox" name="light-switch" class="light-switch" />
1| const lightSwitch = document.querySelector('.light-switch');

5 lightSwitch.addEventListener('change', () => {
4 document .documentElement.classList.toggle('dark');

5 1)

7 Tailwind Plugins

You can add plugins to Tailwind CSS to extend its functionality. You can add plugins to add
new utilities, components, or styles.

Tailwind has some official plugins that you can use. You can find them here.

Example using @tailwindcss/typography plugin:

First install the plugin via npm: npm install -D Qtailwindcss/typography

Then add require('@tailwindcss/typography' to the plugins array in the configuration file.

1| /** @type {import('tailwindcss').Config} */
> | module.exports = {

3 plugins: [
require('@tailwindcss/typography')

™

5 1,
6 /).
7}

Now you can use the typography plugin in your CSS.

1 | <article class="prose lg:prose-xl1'">

2 <h1>Garlic bread with cheese: What the science tells us</h1>

3 <p>

4 For years parents have espoused the health benefits of eating garlic
— bread with cheese to their

5 children, with the food earning such an iconic status in our culture
— that kids will often dress

6 up as warm, cheesy loaf for Halloween.

7 </p>

8 <p>

https://tailwindcss.com/docs/plugins

Some Tailwind Utilities

9 But a recent study shows that the celebrated appetizer may be linked to
— a series of rabies cases

10 springing up around the country.

11 </p>

13 | </article>

In the example above, we are using the prose class from the typography plugin to style the
text.

To know how to use each plugin check its README file on GitHub.

8 Some Tailwind Utilities

We have some classes related font-family like:
o font-sans
o font-serif
« font-mono
We have some classes related to font-size like:
e text-xs
e text-sm
e text-base
e text-1lg
e text-x1
And more. See the documentation for more information.
We have font-style classes like:
e italic
e not-italic
We have font-weight classes like:

e font-thin

font-light
e font-normal
e font-medium
e font-semibold
« font-bold
e font-extrabold
« font-black
We have line-clamp which will truncate the text after a certain number of lines:

e line-clamp-1

https://tailwindcss.com/docs/font-size

Some Tailwind Utilities

e line-clamp-2
e line-clamp-3
And more. See the documentation for more information.

We have bg-[url('./path/to/img"')] to set the background image of an element, But Notice
that the path is relative to the output CSS file not the HTML file.

You can also define a custom image in the configuration file:

1| /** Q@type {import('tailwindcss').Config} */

> module.exports = {

3 theme: {

4 extend: {

5 backgroundImage: {

6 'main': "url('./path/to/img')" // Path is relative to CSS file too
7 }

8 }

o}

10 }

And then use it like this:

1| <div class="bg-main'">
2 l-—- ... -=>
s | </div>

To change the opacity of the background image you can use bg-color/[opacity], for example
bg-green-600/20 will set the background color to green-600 with an opacity of 20%.

We also have divide utilities to add dividers between elements, the dividers are borders:
e divide-x
e divide-y
e divide-x-reverse
e divide-y-reverse

Divide work similar to space utilities, you can use divide-[width] to set the width of the
divider and divide-[color] to set the color of the divider.

We have also mix blend modes, which are used to blend the element with the background: See
the documentation for more information.

We also have transition utilities you can see the documentation for more information.
We also have transform utilities you can see the documentation for more information.

We also have animation utilities you can see the documentation for more information.

https://tailwindcss.com/docs/line-clamp
https://tailwindcss.com/docs/mix-blend-mode
https://tailwindcss.com/docs/transition-property
https://tailwindcss.com/docs/transform
https://tailwindcss.com/docs/animation

	CSS Layers
	Layer & !important

	Layers in Tailwind CSS
	@apply Directive

	@config Directive
	theme(), screens() Functions
	Responsive Tailwind Example
	Dark Mode
	Tailwind Plugins
	Some Tailwind Utilities

