
Session 24

Mohamed Emary

June 27, 2024

1 "use strict"
When JavaScript was first introduced, it was a very forgiving language. It would try to make
sense of whatever code you gave it, even if it was poorly written. This could lead to bugs that
were hard to track down.

Examples of common coding problems that JavaScript would allow when it was first introduced
include:

• Using a variable and assigning a value to it without declaring it first. x = 5;

• Duplicating a parameter name. function sum(x, x) { /* function body */ }

• Using a reserved word as a variable or function name. var let = 5;

In 2009, ECMAScript 5 (ES5) introduced a new feature called “strict mode” that would help
developers catch these bugs earlier. Strict mode is a way to use to a restricted variant of
JavaScript that would catch common coding problems and throw exceptions.

Using strict mode in cases like the ones above would throw an error, which would help you
catch the bugs earlier in the development process.

To enable strict mode, you can add the following line to the top of your JS code:

1 'use strict'; // be sure to include the "quotes"

You can also enable strict mode for just a single function by adding the same line at the top of
the function.

1 function doSomething() {
2 'use strict';
3 // This code is in strict mode
4 }

Strict mode is supported in all modern browsers, and it’s a good practice to use it in your code.

1 'use strict';
2

3 function doSomething() {

1

let and const

4 // This code is in strict mode
5 }
6

7 function doSomethingElse() {
8 // This code is also in strict mode
9 }

Classes and modules which have strict mode enabled by default.

2 let and const
ES6 introduced two new ways to declare variables: let and const.

2.1 let
let is similar to var, but it has a few key differences:

• Variables declared with let are block-scoped, while variables declared with var are
function-scoped.

◦ This will save memory because the variable will only be available within the block
where it was declared, and after the block ends, the variable will be removed from
memory, this will free up memory from unnecessary variables.

• Variables declared with let are not hoisted to the top of the block, while variables
declared with var are hoisted.

• Variables declared with let cannot be redeclared in the same scope, while variables
declared with var can be.

2.2 const
const is similar to let, but it has one key difference:

• Variables declared with const cannot be reassigned to a new value.

Example of using const is to store a value that you know will not change, like the value of
π = 3.14159.

It can also be used in DOM manipulation to store references to elements that you know will not
change

1 const p = document.getElementById('myParagraph');
2

3 // Even if you change any property of the element, no problem
4 // the reference to the element is still the same
5 p.textContent = "Hello, World"

Here are some examples of using let and const:

1 // Block scope
2 {
3 let x = 5;
4 var y = 10;
5 console.log(x); // 5
6 console.log(y); // 10

2

Default Parameter Value

7 }
8 // console.log(x); // ReferenceError: x is not defined, because `let` is

block-scoped↪→

9 console.log(y); // 10
10

11 // reassignment
12 let x = 15;
13 const z = 20;
14 x = 25;
15 // z = 30; // TypeError: Assignment to constant variable, because `const`

does not allow reassignment↪→

16

17 // redeclaration
18 var y = 30;
19 var y = 35;
20

21 let a = 40;
22 // let a = 45; // SyntaxError: Identifier 'a' has already been declared

Temporal Dead Zone (TDZ) with let

Variables declared with let get hoisted to the top of the block, but they are not initialized
until the line where they are declared is reached. This is called the Temporal Dead Zone
(TDZ).

Example:
1 console.log(x); // ReferenceError: Cannot access 'x' before

initialization↪→

2 let x = 5;

2.2.1 for of & const

When using const with for of, it will not throw an error because in a for...of loop, each
iteration creates a new block scope, allowing const to be safely used without reassignment
errors.

This means it doesn’t reassign the variable, but it creates a new variable in a new scope in each
iteration.

1 const arr = [1, 2, 3, 4, 5];
2

3 for (const item of arr) {
4 console.log(item);
5 }

Note: Now you should always use either let or const, never use var again.

3 Default Parameter Value
ES6 introduced a new feature called default parameter values. This allows you to specify a
default value for a parameter in a function if no argument is provided.

3

Template Literal `String`

1 function greet(name = 'World') {
2 console.log(`Hello, ${name}!`);
3 }
4

5 greet(); // Hello, World!
6 greet('Mohamed'); // Hello, Mohamed!

This feature is useful when you want to provide a default value for a parameter if no argument
is provided.

The old way to do this was to use the || operator or an if statement:

1 // Using the || operator
2 function greet(name) {
3 name = name || 'World';
4 console.log(`Hello, ${name}!`);
5 }
6

7 greet(); // Hello, World!
8 greet('Mohamed'); // Hello, Mohamed!
9

10 // Using an if statement
11 function greet(name) {
12 if (name === undefined) {
13 name = 'World';
14 }
15 console.log(`Hello, ${name}!`);
16 }
17

18 greet(); // Hello, World!
19 greet('Mohamed'); // Hello, Mohamed!

4 Template Literal `String`
ES6 introduced a new way to create strings called template literals. Template literals are
enclosed by backticks (`) instead of single quotes (') or double quotes (").

Template literals can contain placeholders, which are indicated by the dollar sign and curly
braces (${expression}). The expression inside the curly braces is evaluated and the result is
inserted into the string.

1 let name = 'Mohamed';
2 let age = 30;
3

4 // Old way
5 let message = 'Hello, ' + name + '! You are ' + age + ' years old.';
6 console.log(message); // Hello, Mohamed! You are 30 years old.
7

8 // New way
9 let message = `Hello, ${name}! You are ${age} years old.`;

10 console.log(message); // Hello, Mohamed! You are 30 years old.

Template literals can span multiple lines without the need for escape characters:

4

Destruction Assignment

1 let message = `This is a
2 multi-line
3 string.`;
4 console.log(message); // This is a
5 // multi-line
6 // string.

5 Destruction Assignment
Destructuring assignment is a feature introduced in ES6 that allows you to extract values from
arrays or objects and assign them to variables in a more concise way.

5.1 Array Destructuring
Array destructuring allows you to extract values from an array and assign them to variables in
a single statement.

1 let numbers = [1, 2, 3, 4, 5];
2

3 [a, b, c, d, e] = numbers;
4 console.log(a, b, c, d, e); // 1 2 3 4 5
5

6 [f, g, h] = numbers;
7 console.log(f, g, h); // 1 2 3

You can also skip elements in the array by leaving empty spaces:

1 let numbers = [1, 2, 3, 4, 5];
2

3 let [a, , c, , e] = numbers;
4

5 console.log(a, c, e); // 1 3 5

You can also use the rest operator ... to capture the remaining elements of an array:

1 let numbers = [1, 2, 3, 4, 5];
2

3 let [a, b, ...rest] = numbers;
4

5 console.log(a, b); // 1 2
6 console.log(rest); // [3, 4, 5]

5.2 Object Destructuring
Object destructuring allows you to extract values from an object and assign them to variables
in a single statement.

1 let person = { name: 'Mohamed', age: 30 };
2

3 let { name, age } = person;
4

5 console.log(name, age); // Mohamed 30

5

Destruction Assignment

You can also use different variable names for the extracted values:

1 let person = { name: 'Mohamed', age: 30 };
2

3 let { name: personName, age: personAge } = person;
4

5 console.log(personName, personAge); // Mohamed 30

You can also provide default values for the variables:

1 let person = { name: 'Mohamed' };
2

3 let { name, age = 30 } = person;
4

5 console.log(name, age); // Mohamed 30

Lets try a more complex example:

1 let person = {
2 name: 'Mohamed',
3 age: 30,
4 address: {
5 country: 'USA',
6 city: {
7 name: 'New York',
8 zip: 10001,
9 }

10 }
11 };
12

13 let {
14 name,
15 age,
16 address: {
17 country,
18 city: { name: cityName, zip },
19 },
20 } = person;
21

22 console.log(name, age, country, cityName, zip); // Mohamed 30 USA New York
10001↪→

You can also combine both dot notation and object destructuring:

1 let person = {
2 name: 'Mohamed',
3 age: 30,
4 address: { country: 'USA', city: { name: 'New York', zip: 10001 } },
5 };
6

7 let { zip } = person.address.city;
8

9 console.log(zip); // 10001

6

this Keyword

6 this Keyword
The this keyword in JavaScript refers to the object it belongs to. It has different values
depending on where it is used:

• In a method, this refers to the owner object.
• Alone, this refers to the global object. In a browser, it refers to the window object.
• In a function, this refers to the global object too.
• In a function, in strict mode, this is undefined.
• In an event, this refers to the element that received the event. For example, e.target is

equivalent to this.target.
• In an object, this refers to the object itself.

In JavaScript, this always refers to the “owner” of the function we’re executing, or rather, to
the object that a function is a method of.

1 let person = {
2 firstName: 'Mohamed',
3 lastName: 'Ahmed',
4 fullName: function() {
5 return this.firstName + ' ' + this.lastName;
6 }
7 };
8

9 console.log(person.fullName()); // Mohamed Ahmed

In the example above, this refers to the person object because the fullName function is a
method of the person object.

If you were to call the fullName function without the person object:

1 let person = {
2 firstName: 'Mohamed',
3 lastName: 'Ahmed',
4 fullName: function() {
5 return this.firstName + ' ' + this.lastName;
6 }
7 };
8

9 let fullName = person.fullName;
10 console.log(fullName()); // TypeError: Cannot read properties of undefined

(reading 'firstName')↪→

In this case, this refers to the global object because the fullName function is not a method of
the person object. Since the global object does not have firstName and lastName properties,
it throws an error.

6.1 this In A Function Inside An Object Method
When strict mode is not used, if we use this in a function inside an object method, it will
refer to the global object.

7

Arrow Functions

1 let obj = {
2 getThis: function () {
3 let innerFunc = function () {
4 console.log(this);
5 };
6 innerFunc();
7 },
8 };
9

10 obj.getThis(); // window

And if we "use strict", this will be undefined.

People used to solve this problem by using a variable to store the value of this before entering
the function.

1 let obj = {
2 that: this,
3 getThis: function () {
4 let that = this;
5 let innerFunc = function () {
6 console.log(that);
7 };
8 innerFunc();
9 },

10 };
11

12 obj.getThis(); // The object itself

7 Arrow Functions
Arrow functions are a new way to write functions introduced in ES6. They provide a more
concise syntax for writing functions compared to traditional function expressions.

Arrow functions have the following syntax:

1 let add = (a, b) => a + b;

This is equivalent to the following traditional function expression:

1 let add = function(a, b) {
2 return a + b;
3 };

Arrow functions have the following features:

• They have a more concise syntax compared to traditional function expressions.
• They do not have their own this. They inherit these from the surrounding code.

Here are some examples of arrow functions:

1 // Single parameter
2 let square = x => x * x;
3

4 // Multiple parameters

8

Set

5 let add = (a, b) => a + b;
6

7 // No parameters
8 let greet = () => 'Hello, World!';
9

10 // Multiple statements
11 let sum = (a, b) => {
12 let result = a + b;
13 return result;
14 };

Some Notes:

• With single parameter you can ignore the parentheses of the parameter.
• With one statement you can ignore the curly braces and the return keyword.
• With no parameters you can use empty parentheses.
• With multiple statements you need to use curly braces and the return keyword.
• With multiple parameters you need to use parentheses.

7.1 this & Arrow Functions
We mentioned earlier that arrow functions do not have their own this, they inherit this from
the surrounding code.

This will help us solve the problem mentioned earlier in the section about this in a function
inside an object method.

1 let obj = {
2 getThis: function () {
3 let innerFunc = () => {
4 console.log(this);
5 };
6 innerFunc();
7 },
8 };
9

10 obj.getThis(); // The object itself

Now we don’t need to use a variable to store the value of this before entering the function.

8 Set
Set was introduced in ES6. A Set is a collection of unique values. It is similar to an array,
but it does not allow duplicate elements.

You can create a Set by passing an array of values to the Set constructor:

1 let set = new Set([1, 2, 3, 4, 5, 1, 2, 3]); // Duplicate values are
removed↪→

2

3 console.log(set); // Set(5) { 1, 2, 3, 4, 5 }

9

Set

8.1 Set & Array
You can convert a Set to an array using the Array.from method:

1 let set = new Set([1, 2, 3]);
2

3 let arr = Array.from(set);
4

5 console.log(arr); // [1, 2, 3]

You can also convert an array to a Set using the Set constructor:

1 let arr = [1, 2, 3, 4, 5, 1, 2, 3];
2

3 let set = new Set(arr);
4

5 console.log(set); // Set(5) { 1, 2, 3, 4, 5 }

8.2 Set Methods
8.2.1 add

You can add values to a Set using the add method:

1 let set = new Set();
2

3 set.add(1);
4 set.add(2);
5 set.add(3);
6

7 // Or you can chain the add method
8 set.add(1).add(2).add(3);
9

10 console.log(set); // Set(3) { 1, 2, 3 }

8.2.2 size

You can get the number of elements in a Set using the size property:

1 let set = new Set([1, 2, 3]);
2

3 console.log(set.size); // 3

8.2.3 has

You can check if a Set contains a value using the has method:

1 let set = new Set([1, 2, 3]);
2

3 console.log(set.has(1)); // true
4 console.log(set.has(4)); // false

8.2.4 delete

You can remove values from a Set using the delete method:

10

Map

1 let set = new Set([1, 2, 3]);
2

3 set.delete(2);
4

5 console.log(set); // Set(2) { 1, 3 }

9 Map
Map was introduced in ES6. A Map is a collection of key-value pairs. It is similar to an object,
but it has some key differences:

• The keys in a Map can be of any type, while the keys in an object are always strings.
• The keys in a Map preserve the order in which they were inserted, while the keys in an

object do not.
• The size of a Map can be easily determined using the size property.
• You can easily iterate over the keys and values in a Map.
• You can remove an entry from a Map using the delete method.

Similar to Set, you can create a Map by passing an array of key-value pairs to the Map constructor:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map); // Map(2) { 'name' => 'Mohamed', 'age' => 30 }

9.1 Map & Object
You can convert an object to a Map using the Map constructor and the Object.entries method:

1 let obj = { name: 'Mohamed', age: 30 };
2

3 let map = new Map(Object.entries(obj));
4

5 console.log(map); // Map(2) { 'name' => 'Mohamed', 'age' => 30 }

You can also convert a Map to an object using the Object.fromEntries method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 let obj = Object.fromEntries(map);
7

8 console.log(obj); // { name: 'Mohamed', age: 30 }

11

Map

9.2 Map Methods
9.2.1 set

You can add key-value pairs to a Map using the set method:

1 let map = new Map();
2

3 map.set('name', 'Mohamed');
4 map.set('age', 30);
5

6 // Or you can chain the set method
7 map.set('name', 'Mohamed').set('age', 30);
8

9 console.log(map); // Map(2) { 'name' => 'Mohamed', 'age' => 30 }

9.2.2 size

You can get the number of key-value pairs in a Map using the size property:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map.size); // 2

9.2.3 keys & values

You can get the keys and values of a Map using the keys and values methods:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map.keys()); // MapIterator { 'name', 'age' }
7 console.log(map.values()); // MapIterator { 'Mohamed', 30 }

9.2.4 has

You can check if a Map contains a key using the has method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map.has('name')); // true
7 console.log(map.has('gender')); // false

9.2.5 delete

You can remove key-value pairs from a Map using the delete method:

12

Map

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 map.delete('age');
7

8 console.log(map); // Map(1) { 'name' => 'Mohamed' }

9.2.6 clear

You can remove all key-value pairs from a Map using the clear method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 map.clear();
7

8 console.log(map); // Map(0) {size: 0}

9.2.7 entries

You can get the key-value pairs of a Map using the entries method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6

7 console.log(map.entries()); // MapIterator {'name' => 'Mohamed', 'age' =>
30}↪→

9.3 Map Iteration
You can iterate over the key-value pairs of a Map using the for...of method:

9.3.1 Iterating Over Entries

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6

7 for (const entry of map) {
8 console.log(entry);
9 }

13

Map

9.3.2 Iterating Over Keys

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 for (const key of map.keys()) {
7 console.log(key);
8 }

9.3.3 Iterating Over Values

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 for (const value of map.values()) {
7 console.log(value);
8 }

9.3.4 Iterating With Destructuring

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 for (const [key, value] of map) {
7 console.log(key, value);
8 }

14

Summary

10 Summary
In this session, we covered the following topics:

• "use strict" which is a way to use a restricted variant of JavaScript that would catch
common coding problems and throw exceptions.

• let and const which are new ways to declare variables in ES6.
• Default parameter values which allow you to specify a default value for a parameter in a

function if no argument is provided.
• Template literals which are a new way to create strings in ES6.
• Destructuring assignment which allows you to extract values from arrays or objects and

assign them to variables in a more concise way.
• Arrow functions which are a new way to write functions in ES6.
• this keyword which refers to the object it belongs to.
• Set which is a collection of unique values.
• Map which is a collection of key-value pairs.

15

	"use strict"
	let and const
	let
	const
	for of & const

	Default Parameter Value
	Template Literal `String`
	Destruction Assignment
	Array Destructuring
	Object Destructuring

	this Keyword
	this In A Function Inside An Object Method

	Arrow Functions
	this & Arrow Functions

	Set
	Set & Array
	Set Methods
	add
	size
	has
	delete

	Map
	Map & Object
	Map Methods
	set
	size
	keys & values
	has
	delete
	clear
	entries

	Map Iteration
	Iterating Over Entries
	Iterating Over Keys
	Iterating Over Values
	Iterating With Destructuring

	Summary

