
Session 20

Mohamed Emary

June 3, 2024

1 DOM (Document Object Model)
When the browser loads an HTML document, it creates a tree-like structure in memory. This
structure is called the Document Object Model (DOM). The DOM represents the document as
nodes and objects, allowing you to interact with the document using JavaScript.

For example if you have an tag in your HTML, this tag will be represented as an object
in the DOM, and its attributes (e.g., src, alt, width, height) will become properties of this
object and can be accessed and modified using JavaScript.

But what is the difference between HTML and DOM? In short, HTML represents the
initial page content and the DOM (Document Object Model) represents the current content in
a tree of objects. If you have a html page and add a tag with javascript, the actual HTML of
the page is still the same, but the “DOM” however has changed.

2 Selecting Elements in the DOM
Suppose you have this HTML element:

1 <div id="myElement" class="myClass"></div>

To select that element using JavaScript there are several ways to do that. Here are some common
methods:

1. getElementById: This method returns the element with the specified ID. (Note: IDs
must be unique within the document.)

1 var element = document.getElementById('myElement');

2. getElementsByClassName: This method returns a collection of elements with the specified
class name.

1 var elements = document.getElementsByClassName('myClass');

3. getElementsByTagName: This method returns a collection of elements with the specified
tag name.

1

Selecting Elements in the DOM

1 var elements = document.getElementsByTagName('div');

4. getElementsByName: This method returns a node list of elements with the specified name
attribute.

1 var elements = document.getElementsByName('myName');

5. querySelector: This method returns the first element that matches the specified CSS
selector.

1 var element = document.querySelector('.myClass');

6. querySelectorAll: This method returns a node list of elements that match the specified
CSS selector.

1 var elements = document.querySelectorAll('.myClass');

getElementsByClassName, getElementsByTagName return a collection of elements called
HTMLCollection, which is an array-like object. If you want to access a specific element, you
can use the index like elements[0].

Since HTMLCollection is not an actual array, you can’t use array methods like join, push, pop,
etc. To convert it to an array, you can use the Array.from method.

1 var elements = document.getElementsByClassName ('myClass');
2 var elementsArray = Array.from(elements);

Now you can use array methods on elementsArray.

getElementsByName, querySelectorAll return a NodeList, which is also an array-like object
that you can loop through and access elements by index and you can’t use array methods on it.
You can also convert it to an array using Array.from.

The difference between HTMLCollection and NodeList is that NodeList is a list of nodes,
not just elements. For example, it can contain text nodes, comment nodes, etc. While
HTMLCollection only contains elements.

There is some elements that are built-in properties of the document object:

1. document.documentElement: Returns the <html> element.
2. document.head: Returns the <head> element.
3. document.body: Returns the <body> element.
4. document.title: Returns the title of the document.
5. document.images: Returns a collection of all elements in the document.
6. document.links: Returns a collection of all <a> elements with a href attribute in the

document.
7. document.forms: Returns a collection of all <form> elements in the document.
8. document.scripts: Returns a collection of all <script> elements in the document.
9. document.styleSheets: Returns a collection of all <link> and <style> elements that

have a rel attribute with the value stylesheet.

2

Event Listeners

3 Event Listeners
Event listeners are used to listen for events on a specific element and execute a JavaScript
function when that event occurs. You can add event listeners to any element in the DOM.

Syntax:

1 element.addEventListener(event, function);

• element: The element to attach the event listener to.
• event: The event to listen for (e.g., click, mouseover, keydown, etc.).
• function: The function to execute when the event occurs.

This way of adding event listeners is better than using the onEvent attribute in the HTML
because it allows you to add multiple event listeners to the same element and separate the
JavaScript code from the HTML.

Here is an example of adding an event listener to a button element:

In HTML:

1 <button id="myButton">Click me</button>

In JavaScript:

1 function sayHello() {
2 console.log('Hello!');
3 }
4

5 var button = document.getElementById('myButton');
6 // Don't use () after function name
7 button.addEventListener('click', sayHello);

Using () after the function name will execute the function immediately once the event listener
is added. You should only pass the function name without ().

But what if that function has parameters? You can use an anonymous function to pass
the parameters:

1 function sayHello(name) {
2 console.log('Hello, ' + name + '!');
3 }
4

5 button.addEventListener('click', function() {
6 sayHello('John');
7 });

The same applies to element.event way of adding event listeners:

1 function sayHello() {
2 console.log('Hello!');
3 }
4 button.onclick = sayHello;

And if the function has parameters:

3

Event Object

1 function sayHello(name) {
2 console.log('Hello, ' + name + '!');
3 }
4 button.onclick = function() {
5 sayHello('John');
6 };

What is the difference between addEventListener and element.event? The main
difference is that addEventListener allows you to add multiple event listeners to the same
element, while element.event can only have one event listener per event type.

1 var button = document.getElementById('myButton');
2 button.onclick = function() {
3 console.log('Hello!');
4 };
5

6 button.onclick = function() {
7 console.log('Goodbye!');
8 };

In this example, only the second event listener will be executed because the first one will be
overwritten.

1 var button = document.getElementById('myButton');
2 button.addEventListener('click', function() {
3 console.log('Hello!');
4 });
5

6 button.addEventListener('click', function() {
7 console.log('Goodbye!');
8 });

In this example, both event listeners will be executed in the order they were added.

4 Event Object
When an event occurs, the browser creates an event object that contains information about the
event. This object is passed as an argument to the event listener function.

Here is an example of using the event object to get information about a click event:

1 var button = document.getElementById('myButton');
2 button.addEventListener('click', function(event) {
3 console.log(event);
4 });

The event object contains information such as:

• type: The type of event (e.g., click, dblclick, mouseover, keydown, etc.).
• target: The element that triggered the event.
• clientX, clientY: The coordinates of the mouse pointer when the event occurred.
• keyCode: The key code of the key that was pressed (for keyboard events).

4

Some Common Events

Example using the event object with the whole document:

1 document.addEventListener('keydown', function(event) {
2 console.log(event.keyCode);
3 });
4

5 document.addEventListener('click', function(event) {
6 console.log(event.clientX, event.clientY);
7 console.log(event.target);
8 console.log(event.type);
9 });

5 Some Common Events
Here are some common events that you can listen for:

Mouse Related Events:

• click: The user clicks an element.
• dblclick: The user double-clicks an element.
• mousemove: The user moves the mouse.
• mouseenter: The user moves the mouse over an element.
• mouseleave: The user moves the mouse out of an element.
• mouseup: The user releases a mouse button.
• mousedown: The user presses a mouse button.
• mouseover: The user moves the mouse over an element.
• mouseout: The user moves the mouse out of an element.
• scroll: The user scrolls the page.
• drag: The user is dragging an element. (Note: you should add draggable="true" to the

element HTML code to make it draggable.)
• dragstart: The user starts dragging an element.
• dragend: The user stops dragging an element.

Keyboard Related Events:

• keyup: The user releases a key on the keyboard.
• keydown: The user presses a key on the keyboard.
• keypress: The user presses a key on the keyboard.

Input and Form Related Events:

• input: The user inputs text into an input element.
• change: The user focuses out of an input element after changing its value.
• submit: The user submits a form. This for example can be used to prevent the page

from reloading when submitting a form using event.preventDefault() (event here is
the event object passed to the event listener function not the event type).

5

Changing Element Styles

Focus Related Events:

• focus: The user focuses on an input element.
• blur: The user focuses out of an input element.

There are many more events that you can listen for. You can find a complete list of events in
the MDN Web Docs.

6 Changing Element Styles
You can change the style of an element using JavaScript by accessing its style property. This
property contains all the CSS properties of the element.

Here is an example of changing the background color of a div element:

1 var element = document.getElementById('myElement');
2 element.style.backgroundColor = 'red';

You can also change multiple styles at once using the cssText property:

1 element.style.cssText = 'background-color: red; color: white; font-size:
20px;';↪→

These properties are useful for changing styles dynamically based on user interactions or other
events.

The styles applied using the style property are inline styles, which have the highest specificity
and override any other styles defined in external CSS files or internal styles except ones with
!important.

When a style has !important and you want to override it using JavaScript, you can use the
cssText property with !important:

1 element.style.cssText = 'background-color: red !important;';

6.1 Example of Making an Element Draggable
To make an element draggable, you need to add the draggable attribute to the element and set
it to true. You can then listen for the dragend event to get the mouse coordinates and move
the element to that position.

Here is an example of making a div element draggable:

In HTML:

1 <div id="myElement" draggable="true">Drag me</div>

In JavaScript:

1 var element = document.getElementById("myElement");
2 element.style.cssText = `
3 width: 100px;
4 height: 100px;
5 line-height: 100px;
6 text-align: center;
7 background-color: gold;`;
8 element.addEventListener("dragend", function (event) {

6

https://developer.mozilla.org/en-US/docs/Web/Events

Class List

9 element.style.position = "absolute";
10 element.style.left = event.clientX + "px";
11 element.style.top = event.clientY + "px";
12 element.style.transform = "translate(-50%, -50%)";
13 });

In this code we applied some styles to the element using the cssText property, then we listened
for the dragend event to get the mouse coordinates and move the element to that position.

Don’t forget to add px after because the clientX and clientY properties return the mouse
coordinates in pixels but the unit is not specified so you need to add px after the value.

In the example above you can also use mousemove event instead of dragend to move the element
while dragging it but that will make you not able to drop it in a new position. You can for
example use that to make a simple icon that is always following the mouse cursor or to make a
simple drawing app where you draw by dragging the mouse.

7 Get, Set, and Remove Attributes
You can use the setAttribute method to set an attribute of an element and the getAttribute
method to get the value of an attribute.

Here is an example of setting and getting the src, alt attributes of an img element:

1 var img = document.getElementById('myImage');
2 img.setAttribute('src', 'image.jpg');
3 img.setAttribute('alt', 'My Image');
4

5 var src = img.getAttribute('src');
6 var alt = img.getAttribute('alt');
7 console.log(src); // Output: image.jpg
8 console.log(alt); // Output: My Image

You can also use these methods to set and get styles:

1 <div id="myElement" style="background-color: red;">lorem</div>

1 var element = document.getElementById('myElement');
2 var backgroundColor = element.getAttribute('style');
3 console.log(backgroundColor); // Output: background-color: red;
4

5 element.setAttribute('style', 'background-color: blue;');
6 backgroundColor = element.getAttribute('style');
7 console.log(backgroundColor); // Output: background-color: blue;

To remove an attribute, you can use the removeAttribute method:

1 element.removeAttribute('style');

This will remove the style attribute from the element.

8 Class List
The classList property allows you to add, remove, toggle, replace, and check if it contains
classes on an element.

7

Class List

Here is an example of adding, removing, and toggling classes on an element:

• add: Adds a class or more to the element.
• remove: Removes a class from the element.
• toggle: Toggles a class on the element (adds the class if it doesn’t exist, removes it if it

does).
• replace: Replaces a class with another class.
• contains: Checks if the element has a specific class.

1 var element = document.getElementById('myElement');
2 element.classList.add('myClass');
3 element.classList.remove('myClass');
4 element.classList.toggle('myClass'); // adds the class again
5 var hasClass = element.classList.contains('myClass');
6 console.log(hasClass); // Output: true
7 element.classList.add('oldClass');
8 element.classList.replace('oldClass', 'newClass');
9 console.log(element.classList.contains('oldClass')); // Output: false

10 console.log(element.classList.contains('newClass')); // Output: true

The classList property is useful for adding and removing classes dynamically based on user
interactions or other events.

You can pass multiple classes to the add method by separating them with a comma:

1 element.classList.add('class1', 'class2', 'class3');

8

Summary

9 Summary
• The DOM (Document Object Model) is a tree-like structure that represents the document

as nodes and objects.
• Each element in the DOM is represented as an object with properties and methods that

allow you to interact with it using JavaScript.
• HTML is the initial page content, and the DOM represents the current content in a tree

of objects.
• You can select elements in the DOM using methods like:

◦ getElementById - Returns the element with the specified ID.
◦ getElementsByClassName - Returns a collection of elements with the specified class

name.
◦ getElementsByTagName - Returns a collection of elements with the specified tag

name.
◦ getElementsByName - Returns a node list of elements with the specified name

attribute.
◦ querySelector - Returns the first element that matches the specified CSS selector.
◦ querySelectorAll - Returns a node list of elements that match the specified CSS

selector.
• HTMLCollection is an array-like object that contains elements with the same class name

or tag name, while NodeList contains nodes, not just elements.
• Event listeners are used to listen for events on elements and execute JavaScript functions

when those events occur.
• You can add event listeners using the addEventListener method.
• Event listeners can also be added using the element.event syntax but it can only have

one event listener per event type.
• Some common events include click, dblclick, mouseover, keydown, input, change,

submit, focus, blur, etc.
• The event object contains information about the event that occurred, such as the type of

event, the target element, and the mouse coordinates.
• You can change the style of an element using the style property and the cssText property.
• The setAttribute, getAttribute, and removeAttribute methods are used to get, set,

and remove attributes of an element.
• The classList property allows you to add, remove, toggle, replace, and check if it

contains classes on an element.

9

	DOM (Document Object Model)
	Selecting Elements in the DOM
	Event Listeners
	Event Object
	Some Common Events
	Changing Element Styles
	Example of Making an Element Draggable

	Get, Set, and Remove Attributes
	Class List
	Summary

