
Session 15

Mohamed Emary

April 28, 2024

1 Operators In JavaScript

1.1 Arithmetic Operators
Arithmetic operators in JS are: +, -, *, /, **, and %.

The % operator returns the remainder of a division, for example if x = 5 and y = 2, then x %
y is 1. When the remainder is 0, it means that y is divisible by x.

When + is used with strings, it concatenates them, for example:

1 var x = "Hello" + "World"; // x is "HelloWorld"
2 var y = "Hello" + 1 + 2; // y is "Hello12"
3 var z = 1 + 2 + "Hello"; // z is "3Hello"

1.2 Assignment Operators
Assignment operators in JS are: =, +=, -=, *=, /=, **=, and %=.

1.3 Comparison Operators
Comparison operators in JS are: ==, ===, !=, !==, >, <, >=, and <=.

1 var x = 5;
2 var y = 5;
3 console.log(x >= y); // true
4

5 x = "5";
6 console.log(x == y); // true
7 console.log(x != y); // false
8

9 console.log(x === y); // false
10 console.log(x !== y); // true

So what is the difference between == and ===?

1

Conditional Statements

• == is used to compare values, while === is used to compare values and types.
• console.log(x == y); is true because JS converts the string to a number if possible.
• console.log(x === y); is false because === does not convert the types.

1.4 Logical Operators
Logical operators in JS are: &&, ||, and ! (AND, OR, and NOT).

Explanation:

• && is true if all conditions are true and false if at least one condition is false.
• || is true if at least one condition is true and false if all conditions are false.
• ! is used to reverse the result, so if a condition evaluates to true, ! will make it false.

1 var x = 5;
2 var y = 10;
3 console.log(x > 3 && y < 20); // true
4 console.log(x > 3 || y > 20); // true
5 console.log(!(x > 3)); // false

Logical operators are commonly used in to make decisions in JS using conditional statements.

2 Conditional Statements

2.1 If Statement
The if statement is used to execute a block of code if a condition is true.

1 var x = 5;
2 if (x > 0) {
3 console.log("x is positive");
4 }

The statement console.log("x is positive"); will only be executed if x > 0.

2.2 Else Statement
The else statement is used to execute a block of code if the same condition is false.

1 var x = -5;
2 if (x > 0) {
3 console.log("x is positive");
4 } else {
5 console.log("x is negative");
6 }

2.3 Else If Statement
The else if statement is used to specify new conditions if the previous conditions are false.

1 var skill = "HTML";
2 if (skill == "CSS") {

2

Conditional Statements

3 console.log("CSS");
4 } else if (skill == "HTML") {
5 console.log("HTML");
6 } else if (skill == "JavaScript") {
7 console.log("JavaScript");
8 } else {
9 console.log("Another skill");

10 }

Here if skill is not CSS it checks if it is HTML, and if not, it checks if it is JavaScript and if
not, it prints Another skill.

2.4 Nesting If Statement
A nested if statement is an if statement inside another if statement.

1 var x = 10;
2 var y = 20;
3 if (x == 10) {
4 if (y == 20) {
5 console.log("x is 10 and y is 20");
6 }
7 }

2.5 Switch Statement
The switch statement is used to perform different actions based on different conditions.

1 var day = 3;
2 switch (day) {
3 case 1:
4 console.log("Monday");
5 break;
6 case 2:
7 console.log("Tuesday");
8 break;
9 case 3:

10 console.log("Wednesday");
11 break;
12 default:
13 console.log("Another day");
14 }

The break statement is used to break out of the switch block, because JS will execute the next
switch case if a break is not found.

Switch statement has a better performance than if-else statement.

2.6 Nested Switch Statement
A nested switch statement is a switch statement inside another switch statement.

1 var day = 3;
2 var month = 4;

3

Loops

3 switch (day) {
4 case 1:
5 console.log("Monday");
6 break;
7 case 2:
8 console.log("Tuesday");
9 break;

10 case 3:
11 switch (month) {
12 case 4:
13 console.log("Wednesday, April");
14 break;
15 case 5:
16 console.log("Wednesday, May");
17 break;
18 default:
19 console.log("Another Month");
20 }
21 break;
22 default:
23 console.log("Another day");
24 }

2.7 Falsey Values
Falsey values in JS are values that are considered false when evaluated in a boolean expression.
They include: false, 0, "", null, undefined, and NaN.

1 var x = "";
2 var y = "Mohamed";
3 console.log(x && y); // prints nothing
4 console.log(x || y); // Mohamed

The first console.log prints nothing because x is falsey and we are using the && operator so
both conditions must be true to execute the statement, while the second console.log prints
Mohamed because y is truthy and we are using the || operator so only one condition must be
true to execute the statement.

The && stops evaluating with the first false value, while the || stops evaluating with the first
true value.

3 Loops
Loops are used to execute the same block of code multiple times.

3.1 For Loop
The for loop is used to execute a block of code a number of times.

Syntax:

4

Loops

1 for (initialization; condition; step) {
2 // code block to be executed
3 }

Example:

1 for (var i = 0; i < 5; i++) {
2 console.log(i);
3 }

The loop will print the numbers from 0 to 4.

i++ is the same as i = i + 1, i += 1.

To print even numbers from 0 to 10:

1 for (var i = 0; i <= 10; i += 2) {
2 console.log(i);
3 }

These two code blocks will print forever (infinitive loop):

1 for (;;) {
2 console.log("Hello");
3 }

1 for (var i = 0; i < 5;) {
2 console.log(i);
3 }

While this one will cause an error because of a missing ;:

1 for (;) {
2 console.log("Hello");
3 }

3.2 While Loop
The while loop is used to execute a block of code as long as a condition is true.

Syntax:

1 while (condition) {
2 // code block to be executed
3 }

Example:

1 var i = 0;
2 while (i < 5) {
3 console.log(i);
4 i++;
5 }

The loop will print the numbers from 0 to 4.

3.3 Do While Loop
The do while loop is a variant of the while loop. This loop will execute the code block once,
before checking if the condition is true, then it will repeat the loop as long as the condition is
true.

5

Loops

Syntax:

1 do {
2 // code block to be executed
3 } while (condition);

Example:

1 var i = 0;
2 do {
3 console.log(i);
4 i++;
5 } while (i < 5);

3.4 Using Loops With HTML Elements
You can use loops to manipulate HTML elements.

In HTML:

1 <ul id="list">
2

In JS:

1 var list = document.getElementById("list");
2 for (var i = 0; i < 6; i++) {
3 if (i % 2 === 0) {
4 var item = "<li class='red'>Item " + i + "";
5 } else {
6 var item = "<li class='green'>Item " + i + "";
7 }
8 list.innerHTML += item;
9 }

You can even use the classes to style the elements.

1 .red {
2 color: red;
3 }
4

5 .green {
6 color: green;
7 }

Figure 1: Final Result

6

Summary

4 Summary
• Operators in JS include arithmetic, assignment, comparison, and logical operators.
• Arithmetic operators include +, -, *, /, **, and %.

◦ + is used to concatenate strings.
◦ % returns the remainder of a division.

• Assignment operators include =, +=, -=, *=, /=, **=, and %=.
• Comparison operators include ==, ===, !=, !==, >, <, >=, and <=.

◦ == is used to compare values, while === is used to compare values and types.
• Logical operators include &&, ||, and !.
• Conditional statements include if, else, else if, and switch.

◦ if is used to execute a block of code if a condition is true.
◦ else is used to execute a block of code if the same condition is false.
◦ else if is used to specify new conditions if the previous conditions are false.
◦ switch is used to perform different actions based on different conditions.

∗ break is used with switch to break out of a case, otherwise JS will execute the
next cases till the end.

∗ default is used with switch to execute a block of code if no case is true.
• Falsey values are values that are considered false in a boolean expression, they include

false, 0, "", null, undefined, and NaN.
• Loops include for, while, and do while.

◦ for is used to execute a block of code a number of times.
◦ while is used to execute a block of code as long as a condition is true.
◦ do while is used to execute a block of code once before checking the condition.

7

	Operators In JavaScript
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators

	Conditional Statements
	If Statement
	Else Statement
	Else If Statement
	Nesting If Statement
	Switch Statement
	Nested Switch Statement
	Falsey Values

	Loops
	For Loop
	While Loop
	Do While Loop
	Using Loops With HTML Elements

	Summary

