
Session 10

Mohamed Emary

April 7, 2024

1 Psuedo Classes
Pseudo classes are used to define a special state of an element. They have the same specificity
as regular classes.

• :first-child - Selects the first child of an element
• :last-child - Selects the last child of an element
• :nth-child(n) - Selects the nth child of an element
• :not(selector) - Selects all elements that do not match the given selector

The order of the nth-child is relative to its siblings inside the parent element.

1 <div class="parent">
2 <div class="child">1</div>
3 <div class="child">2</div>
4 <div class="child">3</div>
5 <div class="child">4
6 <div class="child">1</div>
7 <div class="child">2</div>
8 </div>
9 </div>

Using .child:first-child here will select the first child of the parent element.

Using .child:nth-child(2) here will select the second child of the parent element, and the
second child of the 4th child of the parent element. .child here specifies the class of the element
we want to select.

Using .child:nth-child(2n) will select all even children of the parent element, and using
.child:nth-child(2n+1) will select all odd children of the parent element.

The :nth-child pseudo class has some compatibility issues with older browsers.

:not(.item) will select all elements that do not have the class item.

1

Some Extra Selectors

2 CSS Combinators
.item > p - Selects all <p> elements that are direct children of a <div> element

1 <div class="item">
2 <p>First paragraph</p> // Will be selected
3 <div>
4
5 <p>Second paragraph</p> // Will not be selected
6
7 </div>
8 </div>

.item + p - Selects the first <p> element that is placed immediately after an .item element

1 <div>
2 <div class="item"></div>
3 <p>Second paragraph</p> // Will be selected
4 <p>First paragraph</p> // Will not be selected
5 </div>

.item ~ p - Selects all <p> elements that are siblings of an .item element

1 <div>
2 <div class="item"></div>
3 <p>Second paragraph</p> // Will be selected
4 <p>Second paragraph</p> // Will be selected
5 </div>

using * will select all elements.

So in summary:

• > Works wil direct children
• + Works with the first sibling
• ~ Works with all siblings

Note that the space is a combinator as well, and it selects all descendants. for
example .item p will select all <p> elements that are descendants of an .item
element.

3 Some Extra Selectors

3.1 Attribute Selectors
We can select elements based on their attributes.

• [attribute] - Selects all elements with a specific attribute

• [attribute=value] - Selects all elements with the specified attribute and value

• div[class] - Selects all <div> elements with a class attribute

• div[classˆ="it"] - Selects all <div> elements whose class attribute value begins with
it. So for example, it will select <div class="item"> or <div class="item-1"> and so
on.

2

Extra CSS Properties

• div[class$="em"] - Selects all <div> elements whose class attribute value ends with em.
So for example, it will select <div class="item"> or <div class="problem"> and so
on.

• div[class*="it"] - Selects all <div> elements whose class attribute value con-
tains the substring it. So for example, it will select <div class="item"> or <div
class="visited"> and so on.

4 Extra CSS Properties

4.1 Scroll Behavior
scroll-behavior: smooth; - Adds a smooth scrolling effect to the page

It can be used with an anchor tag to scroll to a specific part of the page smoothly.

4.2 Object Fit
Since images are replaced elements they can be styled using the object-fit property.

The default value is fill, which will stretch the image to fit the container.

Figure 1: fill

We can change it to contain to make the image fit the container without stretching it. But it
will look something like this:

Figure 2: contain

3

Extra CSS Properties

Using object-fit: cover; will make the image cover the container without stretching it. It
will look something like this:

Figure 3: cover

Using object-fit: none; will add the image with its original size without stretching it. It
will look something like this:

Figure 4: none

Using object-fit: scale-down; will compare between contain and none and will use the
smaller one. Our image is larger than the container so it will look the same as contain.

Figure 5: scale-down

4

Extra CSS Properties

4.3 Nesting Selectors
We can nest selectors in CSS. For example:

1 .parent {
2 color: red;
3 .child {
4 color: blue;
5 p{
6 font-family: Arial;
7 }
8 &:hover {
9 color: green;

10 }
11 }
12 }

This will make the text color of the .parent element red, and the text color of the .child
element inside the parent element blue.

We can have nested selectors inside nested selectors. For example, the p element inside the
.child element will have the font family of Arial.

The & symbol is used to refer to the parent selector. So &:hover will select the parent element
when it is hovered which is the .child element in this case and change its text color to green.

4.4 Important Property
We can use the !important property to override any other style. It has the highest specificity
even higher than inline styles.

1 p {
2 color: red !important;
3 }

This will make the text color of p element red even if it has another color specified in the inline
style.

If two same selectors have the !important property, the one that comes later will override the
previous one. (The last one will be applied)

1 p {
2 color: red !important;
3 }
4 p {
5 color: blue !important;
6 }

This will make the text color of p element blue.

4.5 Inherit and Initial
Some properties are inherited by default. For example, font family, font size, and text color are
inherited. So if we specify the font family for the body element, all the text inside the body
element will have the same font family.

5

Solving Compatibility Issues

However, other properties like background color are not inherited, so we have to specify them
for each element.

We can use the inherit keyword to make a property inherit the value of its parent element.

1 .parent{
2 padding-top: 20px;
3 }
4

5 .child{
6 padding-top: inherit;
7 }

The child element will inherit the padding-top value of the parent element, so it will have a
padding top of 20px.

The initial keyword resets the property to its default value if it’s inherited. For example, if
we have a color property in the body element, and we want to reset it to its default value in
the p element, we can use the initial keyword.

1 body{
2 color: red;
3 }
4

5 p{
6 color: initial;
7 }

The text color of the p element will be the default color which is black.

5 Solving Compatibility Issues

5.1 CSS
With CSS3, alot of new features were added, and some of them are not supported by older
browsers. So we have to make sure that our website is compatible with all browsers.

To solve compatibility issues, we need to used prefixes for some properties.

• -webkit- for Chrome, Safari, and modern Opera
• -moz- for Firefox
• -ms- for Internet Explorer
• -o- for Opera

For example, linear-gradient is a CSS3 property that is not supported by all browsers. So
we have to add prefixes for it.

1 background: -webkit-linear-gradient(red, blue);
2 background: -moz-linear-gradient(red, blue);
3 background: -ms-linear-gradient(red, blue);
4 background: -o-linear-gradient(red, blue);
5 background: linear-gradient(red, blue);

6

Font Awesome Icons

And it’s important to add the unprefixed version at the end, so that the browser will use it
if it supports it.

Compatibility issues are browser-specific, not web-engine-specific. For example, Chrome and
Opera use the same engine, but they have different compatibility issues.

We can use a tool like Autoprefixer to add prefixes automatically to our CSS code.

6 Semantic HTML
HTML5 Introduced semantic tags like:

• <header> - For page header or section header
• <footer> - For page footer or section footer
• <section> - For Sections of a page
• <main> - For the main content of a page (Can’t be repeated)
• <nav> - For navigation bar
• <mark> - For highlighted text
• <figcaption> - For figure caption
• <article> - For articles or blog posts
• <aside> - For content aside from the content it is placed in

Semantic tags like <header> have meaning, while non-semantic tags like <div> don’t have
meaning.

These elements are not supported by older browsers.

They are important for SEO and accessibility, so we have to make sure that they are supported
by all browsers.

7 Font Awesome Icons
Sometime we need to add icons to our website, icons like phone, map, email, logo, etc. We can
use images for that, but images are not scalable and they are larger in size which is not good for
the website performance, So to solve this issue we can use an icons library like font awesome.

Font Awesome is a library of vector graphics icons that we can use in our website.

Vector graphics are images that can be scaled to any size without losing quality. They are also
smaller in size than raster images so it will not affect the website performance.

It allows you to use icons like these:

í ♥ ' + � � Ö 

 ¯ ò � � Ð § « j Å = « -

To use font awesome we can use any of the following two methods:

Method 1: Using CDN

Visit font awesome page on cdnjs and copy the link of the all.min.css file with the version
you want of font awesome library.

Then link it to your page as a stylesheet like below:

7

https://autoprefixer.github.io/
https://cdnjs.com/libraries/font-awesome

Font Awesome Icons

1 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax
/libs/font-awesome/6.5.2/css/all.min.css">↪→

This will add all font awesome icons, but if you want to add only some icons, for example,
brands icons only you can copy its link from cdn too like this:

1 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax
/libs/font-awesome/6.5.2/css/brands.min.css">↪→

Method 2: Downloading the files

1. Download the font awesome compressed file from here then extract it.
2. Copy the all.min.css file from the css folder and paste it in your project CSS folder.
3. Copy the webfonts folder from the extracted folder and paste it in your project folder.
4. Add the following link to your HTML file:

1 <link rel="stylesheet" href="./css/all.min.css">

After completing any of the above methods, we can use font awesome icons in our HTML file.

To use a font-awesome icon like , we have to use the <i> tag with the fa class and the icon
name class.

1 <i class="fa-brands fa-apple"></i>

The fa-brands class is used to specify the category of the icon, and the fa-apple class is used
to specify the name of the icon.

The font-awesome icons are treated as text, so we can style them using text properties like
color, font-size.

We can even add hover effects to them.

1 .fa-apple {
2 color: blue;
3 font-size: 30px;
4 }
5 .fa-facebook:hover {
6 color: darkblue;
7 }

You can resize them using classes too like fa-lg, fa-2x, fa-3x, fa-4x, fa-5x, fa-6x, fa-7x,
fa-8x, fa-9x, fa-10x. Some of these classes make icons appear inline, while others make them
appear as block.

To give our icons the same width, we can use the fa-fw (Font-Awesome Fixed Width) class.

You can also animate icons using some classes like fa-beat, fa-spin, fa-pulse.

There a lot more you can do like stacking icons, making icons appear inline or block, and more.
You can see all that in the font-awesome documentation from here

8

https://fontawesome.com/download
https://docs.fontawesome.com/web/

Summary

8 Summary
1. Pseudo-Classes:

• They are used to target specific element states, not just element types.
◦ Examples: :first-child (selects first child element), :last-child (selects last

child element), :nth-child(n) (selects nth child element), :not(selector) (selects
elements not matching a selector).

2. CSS Combinators:

• They are used to combine selectors and target elements based on their structure in the
HTML document.

◦ > (greater than): selects direct children of an element.
◦ + (plus): selects the first sibling element immediately after a specific element.
◦ ~ (tilde): selects all sibling elements of a specific element.
◦ Space: selects all descendant elements.

3. Attribute Selectors:

• They are used to target elements based on their attribute presence or specific attribute
values.

◦ [attribute]: selects elements with a specific attribute.
◦ [attribute=value]: selects elements with a specific attribute and value.
◦ Selectors exist for elements starting with ˆ=, ending with $=, or containing *= a

specific value.

4. Extra CSS Properties:

• scroll-behavior: smooth;: creates a smooth scrolling effect on the page.
• object-fit: controls how images are displayed within their container, it can be:

◦ contain

◦ cover

◦ none

◦ scale-down

5. Nesting Selectors:

• Allows for targeting styles based on the element hierarchy in HTML.
• The & symbol within nested selectors refers to the parent selector.

6. Important Property:

• !important: overrides any other style rule, even inline styles, due to its high specificity.

7. Inherit and Initial:

• Properties can be inherited from parent elements or reset to their default values.
◦ inherit: makes a property inherit the value from its parent element.
◦ initial: resets a property to its default value.

8. Solving Compatibility Issues:

9

Summary

• To solve compatibility issues of some CSS3 properties we can use prefixes:
◦ Prefixes are introduced for properties not supported by older browsers (-webkit-,

-moz-, -ms-, -o-).
◦ Tools like Autoprefixer can automate adding prefixes.

9. Semantic HTML:

• HTML tags with meaning used for better SEO and accessibility.
◦ Examples: <header>, <footer>, <section>, <main>, <nav>, etc.

10. Font Awesome Icons:

• Explains how to integrate Font Awesome, a library of vector graphics icons, into your
website.

◦ Methods for including Font Awesome using a CDN or downloading files.
◦ How to use Font Awesome icon classes within HTML tags.
◦ Styling and customizing Font Awesome icons with CSS.

10

http://autoprefixer.github.io/
https://fontawesome.com/

	Psuedo Classes
	CSS Combinators
	Some Extra Selectors
	Attribute Selectors

	Extra CSS Properties
	Scroll Behavior
	Object Fit
	Nesting Selectors
	Important Property
	Inherit and Initial

	Solving Compatibility Issues
	CSS

	Semantic HTML
	Font Awesome Icons
	Summary

