
Session 1

Mohamed Emary

March 3, 2024

1 Introduction
In web development we use three main technologies: HTML, CSS, and JavaScript.

HTML defines the structure of your website. The basic building blocks of HTML are elements,
which are created using tags.

CSS defines the style of your website.

JavaScript defines the behavior of your website.

HTML & CSS are not programming languages, they are markup languages, but JavaScript is a
programming language.

Visual Studio Code is a text editor developed by Microsoft for Windows, Linux and macOS.
It includes support for debugging, embedded Git control, syntax highlighting, intelligent code
completion, snippets, and code refactoring.

To see your HTML, CSS, and JavaScript code in action, you need to open them in a web
browser.

Tim Berners-Lee invented the World Wide Web in 1989.

2 Some HTML Tags and Their Syntax
HTML has paired tags and self-closing tags.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Page Title</title>
5 </head>
6 <body>
7 <h1>This is a Nested Tag</h1>
8
9 </body>

10 </html>

1

Some HTML Tags and Their Syntax

<html> is the parent of all other elements (all other elements are children of it), <head> and
<body> are siblings.

To save use ctrl + s, but it’s better to activate autosave in the settings.

2.1 SEO (Search Engine Optimization)
SEO is Search Engine Optimization, it’s used to rank your website higher in search engines.

We should stick to some rules when making our websites so that search engines rank them
higher.

One of these rules is that one HTML page should never have more than one h1 tag.

2.2 Image Tag
 is a self-closing tag, it doesn’t have a closing tag.

src is the source of the image, and alt is the alternative text for the image.

alt is used when the image can’t be displayed, and it’s used by screen readers to describe the
image to the user. It’s also important for SEO.

Google tag SEO guidelines.

2.3 Anchor Tag
<a> is the anchor tag, it’s used to create hyperlinks.

href is the hyperlink reference, it’s the URL of the page you want to link to.

target="_blank" is used to open the link in a new tab. For security reasons it’s used with
rel="noopener noreferrer" to prevent the new tab from accessing the window.opener object.

2.4 Lists
We have two types of lists in HTML: ordered lists and unordered lists.

2.4.1 Ordered List

Ordered lists has an attribute called type which can be 1, A, a, I, or i.

1
2 Item 1
3 Item 2
4 Item 3
5

2.4.2 Unordered List

1
2 Item 1
3 Item 2
4 Item 3
5

2

https://developers.google.com/search/docs/appearance/google-images?hl=en

Some HTML Tags and Their Syntax

2.5 Tables
Tables in HTML are created using the <table> tag and have three main elements: <thead>,
<tbody>, and <tfoot>.

1 <table>
2 <thead>
3 <tr>
4 <th>Header 1</th>
5 <th>Header 2</th>
6 </tr>
7 </thead>
8 <tbody>
9 <tr>

10 <td>Row 1, Cell 1</td>
11 <td>Row 1, Cell 2</td>
12 </tr>
13 <tr>
14 <td>Row 2, Cell 1</td>
15 <td>Row 2, Cell 2</td>
16 </tr>
17 </tbody>
18 <tfoot>
19 <tr>
20 <td>Footer 1</td>
21 <td>Footer 2</td>
22 </tr>
23 </tfoot>
24 </table>

Table element has a border attribute which is used to specify the width of the border around
the table, for example border="1".

You can control the width or height of the table using the width and height attributes.

You can make the table take the full width of the page using the width attribute and setting it
to 100%.

You can make a cell span multiple columns using the colspan attribute, and you can make a
cell span multiple rows using the rowspan attribute.

To give the table a background color, you can use the style attribute and set the
background-color property. You can also set the color property to change the text color.

3

Summary

3 Summary
• HTML defines the structure of your website.
• CSS defines the style of your website.
• JavaScript defines the behavior of your website.
• Visual Studio Code is a text editor developed by Microsoft for Windows, Linux and

macOS.
• Tim Berners-Lee invented the World Wide Web in 1989.
• SEO is used to rank your website higher in search engines.

3.1 Tag

Table 1: Tags Summary

Tag Description

<html> The root element of an HTML page.
<head> Contains metadata about the HTML page.
<title> Specifies the title of the page.
<body> Contains the visible page content.
<h1> Defines a level 1 heading. We have <h1> to <h6>.
 Embeds an image into the page.
<a> Creates a hyperlink.
 Defines an ordered list.
 Defines an unordered list.
 Defines a list item.
<table> Defines a table.
<thead> Groups the header content in a table.
<tbody> Groups the body content in a table.
<tfoot> Groups the footer content in a table.
<tr> Defines a row in a table.
<th> Defines a header cell in a table.
<td> Defines a cell in a table.

3.2 Attribute

Table 2: Attributes Summary

Attribute Description

src Specifies the source of an image.
alt Specifies an alternate text for an image when the image cannot be displayed.
href Specifies the URL of the page the link goes to.
target Specifies where to open the linked document.

4

Summary

Attribute Description

rel Specifies the relationship between the current document and the linked
document.

type Specifies the type of numbering for list items.
border Specifies the width of the table border.
width Specifies the width of the table.
height Specifies the height of the table.
colspan Specifies the number of columns a cell should span.
rowspan Specifies the number of rows a cell should span.

5

Session 2

Mohamed Emary

March 6, 2024

1 HTML Forms
HTML forms are used to collect user input. To make a form in HTML you need to use <form>
tag. The user input is most often sent to a server for processing. The form tag is used to create
an HTML form for user input.

Form can contain input elements like text fields and labels for these fields.

Example:

1 <form action="/action_page.php">
2 <label for="fname">First name:</label>

3 <input type="text" id="fname" name="fname">

4 <label for="lname">Last name:</label>

5 <input type="text" id="lname" name="lname">

6 <input type="submit" value="Submit">
7 </form>

As you see in the example the value in for in the label element should be exactly the same as
the value in id of the input field.

Each input field should hava a name attribute to be able to be sent to the server.

1.1 Type Attribute
Sometimes you want the user to enter a password, an email, a phone number, a date, a color, a
number, etc. HTML5 has a lot of new input types for these cases. Just use the type attribute
to specify the type of input.

There is a lot of input types, some of them are:

1. text (default)
2. password

3. email

4. number

5. date

6. color

1

HTML Forms

7. url

8. tel

9. search

10. file

11. radio

12. checkbox

Example:

1 <form>
2 <label for="email">Email:</label>

3 <input type="email" id="email" name="email">

4 <label for="password">Password:</label>

5 <input type="password" id="password" name="password">

6 <input type="submit" value="Submit">
7 </form>

Each input element should have a name, type attributes.

You can also add the value attribute to set the default value of the input field.

The submit button is used to send the form to the server and it has a submit type.

The
 used in the example above is used to add a line break between the input fields.

To allow uploading files you can use the file type, and to allow multiple files you can use the
multiple attribute.

You can also allow only a specific type of files using the accept attribute.

Example:

1 <form>
2 <label for="file">Select files:</label>

3 <input type="file" id="file" name="file" multiple accept=".png">

4 <input type="submit">
5 </form>

To allow any type of images you can use accept="image/*". See this link for more information.

1.2 Button
The button element has a type attribute that can be submit, reset, or button.

• submit: The button submits the form data to the server. (This is the default)
• reset: The button resets all the form data to its initial values.
• button: The button does nothing.

You can also use a regular input tag instead of button and set the type attribute to submit,
reset, or button, but it’s better to use the button tag.

1.3 Radio Buttons & Checkboxes
Another type of input we can use is radio. One important thing about radio is that all the
radio buttons in a group should have the same name attribute. You should also add value
attribute to each radio button.

When you add a label for each radio button, you can click on the label to select the radio button.

2

https://www.w3schools.com/tags/att_input_accept.asp

HTML Forms

Example:

1 <form>
2 <fieldset>
3 <legend>Select your favorite fruit:</legend>
4

5 <input type="radio" id="apple" name="fruit" value="apple">
6 <label for="apple">Apple</label>

7

8 <input type="radio" id="banana" name="fruit" value="banana">
9 <label for="banana">Banana</label>

10

11 <input type="radio" id="cherry" name="fruit" value="cherry">
12 <label for="cherry">Cherry</label>
13 </fieldset>
14 </form>

The same applies for checkboxes except that you can select multiple checkboxes at the same
time.

1.4 Textarea
The textarea tag is used to create a multi-line text input. The rows and cols attributes
are used to specify the size of the textarea but the user can still resize it using the mouse by
dragging the bottom right corner of the textarea.

Example:

1 <form>
2 <label for="message">Message:</label>

3 <textarea id="message" name="message" rows="4" cols="30"></textarea>

4 <input type="submit">
5 </form>

1.5 Select Option
The select tag is used to create a drop-down list and the option tag is used to define the
options in the list. If you don’t give a value attribute to the option tag, the value will be the
text inside the option tag.

You can also group the options using the optgroup tag.

When using select with option you can only choose what is available in the list (you can’t
enter a value that is not in the list).

Example:

1 <form>
2 <label for="cars">Choose a car:</label>

3 <select id="cars" name="cars">
4 <optgroup label="Swedish Cars">
5 <option value="volvo">Volvo</option>
6 <option value="saab">Saab</option>
7 </optgroup>

3

HTML Forms

8 <optgroup label="German Cars">
9 <option value="mercedes">Mercedes</option>

10 <option value="audi">Audi</option>
11 </optgroup>
12 </select>

13 <input type="submit">
14 </form>

1.6 Datalist
The datalist tag is used to create a list of options for the input tag. The list should take
the id of the datalist tag.

It also allows the user to enter a value that is not in the list, But you can’t group the options
like in the select tag.

Example:

1 <form>
2 <label for="browser">Choose a browser:</label>

3 <input list="browsers" id="browser" name="browser">
4 <datalist id="browsers">
5 <option>Chrome</option>
6 <option>Firefox</option>
7 <option>Internet Explorer</option>
8 <option>Opera</option>
9 </datalist>

10 <input type="submit">
11 </form>

1.7 Input Validation
In text fields you can use maxlength and minlength attributes to specify the maximum and
minimum number of characters allowed in the input field.

In numbers fields you can use max and min attributes to specify the maximum and minimum
values allowed in the input field.

You can also use the required attribute to make the input field required, so the user can’t
submit the form without filling this field.

In select if the user didn’t choose any option, the first option will be sent to the server, and to
change that you can use the selected attribute in the option tag you want to be the default.

To hide an input field from the user you can use the hidden attribute. And to disable an input
field you can use the disabled attribute. The disabled input fields doesn’t send any data to
the server however the hidden input fields do.

To prevent the user from changing the value of an input field you can use the readonly attribute.

4

Extra Information

Table 1: hidden, disabled, readonly attributes

Attribute Description

hidden Hides the input field from the user but sends the data to the server.
disabled Disables the input field and doesn’t send the data to the server.
readonly Prevents the user from changing the value of the input field, and sends the data to

the server.

2 Extra Information
To check wheather a tag or attribute you are using is supported by the browser you can use the
Can I Use website.

To check your HTML code markup you can use W3C Markup Validation Service.

5

https://caniuse.com/
https://validator.w3.org/

Summary

3 Summary

3.1 Tags

Table 2: Tags Summary

Tag Description

form Creates an HTML form for user input.
input Defines an input field where the user can enter data.
label Defines a label for an input element.
button Defines a clickable button.
textarea Defines a multi-line text input area.
select Defines a drop-down list.
option Defines an option in a drop-down list or a datalist.
datalist Defines a list of options for an input element.
optgroup Defines a group of related options in a drop-down list.
fieldset Groups related elements in a form.
legend Defines a caption for a fieldset element.

3.2 Attributes

Table 3: Attributes Summary

Attribute Description

name Specifies the name of an input element that is sent to the server.
type Specifies the type of an input element.
value Specifies a pre-defined value of an input element.
placeholder Specifies a short hint that describes the expected value of an input element.
for Specifies which input element a label is bound to.
id Specifies a unique id for an input element.
list Refers to a datalist element that contains some options.
multiple Specifies that a user can enter more than one value in an input element.
accept Specifies the types of files that the server accepts.
rows Specifies the visible number of lines in a textarea element.
cols Specifies the visible width of a textarea element.
minlength Specifies the minimum number of characters allowed in an input element.
maxlength Specifies the maximum number of characters allowed in an input element.
min Specifies the minimum value allowed in an input element.
max Specifies the maximum value allowed in an input element.
selected Specifies that an option should be pre-selected when the page loads.
required Specifies that an input field must be filled out before submitting the form.
readonly Specifies that an input field is read-only.

6

Summary

Attribute Description

hidden Specifies that an input field is hidden from the user.
disabled Specifies that an input field is disabled so the user can’t use it.

3.3 Input Types

Table 4: Input Types Summary

Type Description

text Used to create plain text input fields.
password Used to create password input fields.
email Used to create email input fields.
number Used to create numeric input fields.
date Used to create date input fields.
color Used to create color input fields.
url Used to create URL (links) input fields.
tel Used to create telephone number input fields.
search Used to create search input fields.
file Used to create file upload input fields.
radio Used to create radio buttons.
checkbox Used to create checkboxes.
submit Used to create form submit buttons.
reset Used to create form data reset buttons.
button Used to create buttons that do nothing.
range Used to create a range of numeric values.

7

Session 3

Mohamed Emary

March 10, 2024

1 Review & Questions
In the first part of the session, eng. Shimaa reviewed the previous sessions and asked us some
questions to make sure we understand the previous sessions well.

2 CSS
CSS stands for Cascading Style Sheets. It is a style language used for describing the look and
formatting of a document written in HTML. The first version of CSS was introduced in 1996.

2.1 General look of a CSS Rule
1 selector {
2 property: value; /* declaration */
3 }

2.2 Where should CSS code be? & How to link it?
CSS code can be placed in three different locations:

• Inline in the HTML element inside the style attribute.
• Internal in the head section of the HTML document in a separate <style> tag.
• External in a separate file linked to the HTML document using the <link> tag.

2.2.1 Inline CSS

You can apply CSS to an HTML element using the style attribute.

1 <p style="color: red;">This is a paragraph.</p>

2.2.2 Internal CSS

You can write CSS inside the head section of the HTML document using the <style> tag inside
the <head> element of the HTML document.

1

CSS

1 <head>
2 <style>
3 p {
4 color: red;
5 }
6 </style>
7 </head>

2.2.3 External CSS file

You can link an external CSS file to an HTML document using the <link> tag inside the <head>
element of the HTML document.

1 <head>
2 <link rel="stylesheet" href="css/style.css">
3 </head>

In the example above css/style.css is the path of the CSS file in your project. You should
create a folder called css and put the CSS file inside it with a name of your choice for example
style.css.

2.3 Why to separate CSS from HTML?
There are multiple reasons to separate the CSS from the HTML:

• Maintainability: It is easier to maintain and update the code when the HTML and CSS
are separated.

• Reusability: You can use the same CSS file for multiple HTML files.
• Performance: The browser can cache the CSS file and use it for multiple pages.

2.4 If we have different styles for the same element, what would
happen?

If you have different styles for the same element, the style that is defined last will be applied.

1 <head>
2 <style>
3 p {
4 color: red;
5 }
6 </style>
7

8 <!-- In this linked file, the color of p is blue -->
9 <link rel="stylesheet" href="css/style.css">

10 </head>

In the example above the color of the paragraph will be blue not red, because the linked file is
defined after the internal style.

2.5 Selectors
Selectors are used to select the HTML elements that you want to style only.

2

CSS

2.5.1 Tag

To select an HTML element, you can use the tag name of that element, for example to select
the paragraph tag you should use p in the CSS file.

Example:

HTML:

1 <p>This is a paragraph.</p>

CSS:

1 p {
2 color: red;
3 }

2.5.2 Class

To select an HTML element, you can use the class name of that element, and to use the class in
the CSS file you should use a dot . before the class name for example if you have a class called
intro you should use .intro in the CSS file.

Example:

HTML:

1 <p class="intro">This is a paragraph.</p>
2

3 <p>This is not red.</p>

CSS:

1 .intro {
2 color: red;
3 }

In the example above, the color of the first paragraph will be red but the second paragraph will
not be affected.

Some guidelines to follow when using class:

1. You can’t use spaces in class names, but you can use a hyphen - or an underscore _ to
separate the words.

2. You should also use a descriptive name for the class to make it easier to understand the
code.

To give an element multiple classes you can separate them with a space inside the same class=""
attribute, for example class="intro text-center", but you can’t use the class attribute more
than once in the same element.

Classes are also used to reduce code repetition so if you want to apply the same style to multiple
elements you can give them the same class.

2.5.3 ID

To select an HTML element, you can also use the id of that element, and to use the id in the
CSS file you should use a hash # before the id name for example if you have an id called intro

3

CSS

you should use #intro in the CSS file.

The difference between the class and the id is that the class can be used for multiple elements
but the id should be unique in the HTML document.

Since ID should be unique, you shouldn’t use the same id more than once in the same HTML
document.

2.5.4 Grouping

You can group multiple elements to apply the same style to them using a div element.

Example:

HTML:

1 <div class="intro">
2 <h1>This is a heading.</h1>
3 <p>This is a paragraph.</p>
4 </div>

CSS:

1 .intro {
2 color: red;
3 }

What if you want to apply a style to an element only if it is inside a specific
element? (Nested Selectors)

You can use the space to select an element only if it is inside another element. For example if
you want to apply a style to the paragraph only if it is inside a div with a class intro you can
use .intro p in the CSS file.

What if you want to apply a style to an element with a specific class only? Or
apply the style to an element with multiple classes?

To apply a style to a paragraph only if it has a class intro you can use p.intro, and to apply a
style to an element only if it has both the classes intro and center you can use .intro.center
without a space between the classes names.

What if you apply a style to multiple classes?

You can use a comma , to apply the same style to multiple classes, for example .intro,
.center will apply the same style to the elements with the class intro or the class center.

2.6 Specificity
Specificity is the means by which browsers decide which CSS property values are the most
relevant to an element and, therefore, will be applied.

The following list of selector types is by increasing specificity:

1. Universal selectors (e.g., *)
2. Type selectors (e.g., h1)
3. Class selectors (e.g., .example)
4. ID selectors (e.g., #example)

4

CSS

The rules above also applies when combining multiple selectors in the same rule, for example if
you have a rule with a tag and a class, it will be more specific than a rule with a class only.

For a more detailed explanation on how to calculate specificity, you can check the following link.

2.7 Some Styling Properties
The default value for height is auto and for width is 100%.

If you want your styling to be dynamic and responsive, you should use a relative unit like %,
for example width: 100% will make the width of the element 100% of the width of its parent
element.

2.8 Block & Inline Elements
2.8.1 Block-level elements

Start on a new line and take up the full width available

Example block elements are <div>, <h1> to <h6>, <p>, <form>, <header>, <footer>, <section>,
and .

2.8.2 Inline elements

Do not start on a new line and only take up as much width as necessary

Example inline elements are <a>, , , <label>, <input>, , , and .

You can change whether an element is block or inline using the display property. For example,
you can change a <div> to an inline element using display: inline; or an <a> tag to a block
element using display: block;.

With inline elements width and height properties have no effect.

2.8.3 Inline-block

Elements are similar to inline elements, but they can still have width and height

2.9 Replaced Elements
How can element be inline and still have width and height?

This is because the element is replaced inline element.

Replaced elements can be given explicit width and height values using the width and height
properties. This allows you to control the size of the element, regardless of its content.

A replaced element in HTML is an element that is replaced with another element, such as an
image, a video, or an audio file. Replaced elements are not rendered in the same way as other
HTML elements, and they do not have the same properties or behaviors. Replaced elements are
used to embed content that cannot be created with HTML.

The most common replaced elements are:

• : Inserts an image into the document.
• <video> : Inserts a video into the document.

5

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity

CSS

• <audio> : Inserts an audio file into the document.
• <iframe> : Inserts a frame into the document.
• <input> : Inserts an input field into the document.

You can set the width and height of an element using the width and height attributes
in the HTML, or you can use CSS. Here’s an example:

1

In this example, the image will be displayed as a 200px by 200px square, regardless of the
actual dimensions of image.jpg.

6

Summary

3 Summary
CSS (Cascading Style Sheets), a style language used for describing the look and formatting of
HTML documents. The first version was introduced in 1996.

Key points discussed in this session:

1. CSS Rule Structure: A CSS rule consists of a selector and a declaration block. The
declaration block contains properties and their values.

2. CSS Placement: CSS can be placed inline, internally within the HTML document, or
externally in a separate file.

3. Separation of CSS from HTML: This is recommended for maintainability, reusability,
and performance.

4. CSS Selectors: These are used to select HTML elements to style. They can be based on
tag names, class names, or IDs.

5. Specificity: This is how browsers decide which CSS property values are the most relevant
to an element and will be applied. Specificity increases from universal selectors to type
selectors, class selectors, and ID selectors.

6. Styling Properties: The document discusses some styling properties like height and
width.

7. Block & Inline Elements: Block-level elements start on a new line and take up the
full width available, inline elements do not start on a new line and only take up as much
width as necessary, and inline-block elements are similar to inline elements, but they can
still have width and height.

8. Replaced Elements: These are elements whose appearance and dimensions are defined
by an external resource, such as an image, video, or audio file.

7

Session 4

Mohamed Emary

March 10, 2024

1 Review & Questions
In the first part of the session, eng. Shimaa reviewed the previous sessions and asked some
questions.

2 Cont. CSS

2.1 Float & Clear
The float and clear section is from W3Schools So you better read it from there.

2.1.1 Float

As we know from the excercise of the previous session, one of the problems with inline-block is
the extra space between the elements, and to solve this issue, a possible solution is to use float.

float is a CSS property that allows an element to be taken out of the normal flow and placed
along the left or right side of its container.

The float property is used for positioning and formatting content e.g. let an image float left to
the text in a container.

The float property can have one of the following values:

• left or right - The element floats to the left or right of its container
• none - The element does not float (will be displayed just where it occurs in the text). This

is default
• inherit - The element inherits the float value of its parent

float has two problems:

1. Floating elements are removed from the normal flow of the document, One of the obvious
downsides of this is that the parent element no longer contains the floated element. For
example if the container has a background color, it will not expand to contain the floating
element.

1

https://www.w3schools.com/css/css_float.asp

Cont. CSS

2. The last floating element have to be cleared, otherwise it will affect the layout of the next
element.

2.1.2 Clear

The clear property specifies on which sides of the cleared element no elements are allowed to
float, it specifies what should happen with the element that is next to a floating element.

The clear property can have one of the following values:

• none (default) - The element is not pushed below left or right floated elements.
• left or right - The element is pushed below left or right floated elements
• both - The element is pushed below both left and right floated elements
• inherit - The element inherits the clear value from its parent

When clearing floats, you should match the clear to the float: If an element is floated to the left,
then you should clear to the left.

2.2 Margin & Padding
margin is the space outside the border of an element. It is used to create space between the
element and the surrounding elements.

padding is the space inside the border of an element. It is used to create space between the
element’s border and the content.

To give margin to an element use margin property in the form margin: top right bottom
left; in clockwise order.

You can also use margin-top, margin-right, margin-bottom, and margin-left properties to
specify the margin for each side separately.

In the shorthand margin property, if you specify one value, it will be applied to all sides, if you
specify two values, the first value will be applied to the top and bottom, and the second value
will be applied to the right and left.

If you ignore left for example it will be the same as right, and if you ignore bottom it will be
the same as top.

All the above also apply to the padding property.

Sometimes we use margin: auto; to center an element horizontally (horizontally only
vertical direction will not be affected).

Using both margin-right: auto; and margin-left: auto; will also center the element.

Using margin-right: auto; only will push the element to the left, and using margin-left:
auto only will push it to the right.

To center items inside a div use text-align: center;.

The HTML page body has a default margin of 8px, but it can vary between browsers.

2.2.1 Margin Collapse

The top and bottom margins of blocks are sometimes combined (collapsed) into a single margin
whose size is the largest of the individual margins (or just one of them, if they are equal), a

2

Cont. CSS

behavior known as margin collapsing.

It happens due to an empty div inside another div, and the margin of the empty div will collapse
with the margin of the parent div, so you can use padding instead of margin to solve this
problem, or use overflow: auto; in the parent div.

When we use a percentage in the margin or padding it will be a percentage of the width
of the parent element. For example if you have a parent with width 500px and you have a
child with margin-top: 50%; the margin will be 250px, however it’s not recommended to use
percentage with margin.

Box model in dev tools allows you to see the margin, padding, and borders of each element.

2.3 Dealing with Fonts in CSS
font-size property is used to specify the size of the font.

The default font size for paragraphs is 16px.

font-size can be specified in px, em, rem, vw, vh, vmin, vmax, or %.

When we use a percentage % with font-size it’s a percentage of the default font size which is
16px for example 50% will be 8px.

font-weight ranges from 100 to 900 and default is 400. It’s unitless. Some fonts don’t have all
the weights.

Some weights have names like normal which is 400, bold which is 700, bolder which is 900,
and lighter which is 100.

color is used to change the color of the text. It can be a color name, a hex value, an RGB
value, or an HSL value.

font-style specifies the style of the font. It can be normal (default), or italic.

font-family is used to change the shape of the font. One of the problems with this property is
that if the font is not available on the user’s device it will use the default font (fallback), so you
can use font stack to solve this problem. You can also use fonts from google fonts or add your
own font to the project files.

How to embed a font from google fonts?

1. Go to google fonts and choose the font you want.
2. Click on the + icon to add the font to the selection.
3. Click on the embed tab and copy the link tag and paste it in the head of your html file.
4. Copy the font-family and paste it in the css file.

If you choose more than one font, google fonts will give you a link tag with the two fonts in it,
so you don’t have to add a separate link tag for each font.

3

https://fonts.google.com/

Cont. CSS

You can know that font used in a web page using the dev tools, or using a browser extension
like WhatFont.

2.4 Background
It can be a color or an image. A color using background-color and an image using
background-image: url('path to the image');

If the image is not important for SEO add it using CSS background-image, as SEO don’t see
CSS code but if it affects the SEO use it with the HTML tag.

User can’t save the image if it’s added using CSS, but if it was added using HTML, he can save
it.

background-repeat can be:

• no-repeat - The background-image will not be repeated.
• repeat-x - The background-image will be repeated horizontally only.
• repeat-y - The background-image will be repeated vertically only.
• repeat - The background-image will be repeated both horizontally and vertically.
• space - The background-image will be repeated as much as possible without clipping.

The first and last images will be pinned to either side of the element, and whitespace will
be distributed evenly between the images.

background-position can be top, bottom, left, right, center, or you can use the x and y
coordinates.

• background-position: center center; this will center the image in both x and y axis.
• background-position: top right; this will put the image in the top right corner.
• background-position: 50% 50%; this will center the image in both x and y axis.
• background-position: 50% 100%; this will center the image in the x axis and put it in

the bottom of the y axis.
• background-position: 50px 100px; this will put the image 50px from the left and

100px from the top.
• background-position: 100% the default value for the y axis is 50%.

background-size can be specified in pixels, percentage, or using the keywords cover, or
contain.

Examples:

• background-size: 100px 100px; this will make the image 100px by 100px, and the
image original aspect ratio will not be preserved.

• background-size: 100% 100%; this will make the image fit the container, and the image
original aspect ratio will not be preserved.

4

https://chromewebstore.google.com/detail/whatfont/jabopobgcpjmedljpbcaablpmlmfcogm

Cont. CSS

What is the difference between cover and contain?

Both contain and cover will preserve the image original aspect ratio, however:

1. background-size: cover; this will make the image cover the whole container, and it
will not be repeated.

2. background-size: contain; this will make the image fit inside the container, and it can
be repeated.

background-attachment can be scroll (default) or fixed.

vh means viewport height, and vw means viewport width. These units are used to make the
element take a percentage of the visible area of the screen. Each 1vw or 1vh is equal to 1/100
of the viewport width or height.

5

Summary

3 Summary
Float & Clear

• float is used to position an element along the left or right side of its container.
• clear is used to specify on which sides of an element no elements are allowed to float.

Margin & Padding

• margin is the space outside the border of an element
• padding is the space inside the border of an element.
• margin: auto; can be used to center an element horizontally.

Margin Collapse

Margin collapse happens when the top and bottom margins of blocks are combined into a single
margin.

Dealing with Fonts in CSS

Some important font properties in CSS include:

• font-size

• font-weight

• color

• font-style

• font-family

How to embed a font from Google Fonts?

• Go to google fonts and choose the font you want.
• Click on the + icon to add the font to the selection.
• Click on the embed tab and copy the link tag and paste it in the head of your html file.
• Copy the font-family and paste it in the css file.

Background

• background-color is used to set the background color of an element.

• background-image is used to set the background image of an element, and it has some
important properties like:

◦ background-repeat

◦ background-position

◦ background-size

◦ background-attachment.

vh means viewport height, and vw means viewport width.

6

Session 5

Mohamed Emary

March 20, 2024

1 Cont. CSS

1.1 Border
border property is used to set the border of an element. It is a shorthand property for setting
the width, style, and color of the border on different sides of an element, in the form border:
width style color;.

To remove the default border, set to an element like button use border: none;.

border-width: It is used to set the width of the border. It takes values in px, em, rem, %, etc.

border-width can also be set individually for each side of the element using border-top-width,
border-right-width, border-bottom-width, and border-left-width, or the shorthand prop-
erty border-width: top right bottom left;.

border-style: It is used to set the style of the border. It can take values like:

• solid

• dotted

• dashed

• double

• outset

• inset

border-color: It is used to set the color of the border. It can take values like:

• color-name

• #hex

1

Cont. CSS

• rgb()

• rgba()

• hsl()

• hsla()

• transparent

border-radius: It is used to set the radius of the border. It can take values in px, em, rem, %,
etc.

To make element look like a circle, set border-radius to 50% if the element is a square (width
and height are equal).

You can also set the radius individually for each corner of the element using:

• border-top-left-radius

• border-top-right-radius

• border-bottom-left-radius

• border-bottom-right-radius

1.2 CSS Sprites
One of the important things you should take in mind as a web developer is the HTTP requests.
The more the requests, the more the time it takes to load the page which will lower the
performance of the website.

So to improve the performance of the website, we can use CSS sprites. CSS sprites are a way to
reduce the number of HTTP requests made for image resources, by combining images in one file.

For example, consider the following image, It has 20 icons of different colors, each of 76x76
pixels and the whole image is 384x310 pixels.

Figure 1: CSS Sprites

It has a lot of icons. Instead of loading each icon separately, we can combine all the icons in one
image and use CSS to display the required icon.

1 .icon {
2 width: 76px;

2

Cont. CSS

3 height: 76px;
4 background-image: url('icons.png');
5 }
6

7 .icon-1 {
8 background-position: 0 0;
9 }

10

11 .icon-2 {
12 background-position: -76px 0;
13 }

1.3 Background Clip
background-clip: It is used to specify the painting area of the background. It can take values
like:

• border-box (default) - Starts placing the background from the border of the element.

Figure 2: border-box

• padding-box - Starts placing the background from the padding of the element.

Figure 3: padding-box

• content-box - Starts placing the background from the content of the element.

Figure 4: content-box

• text - Makes the background to be painted within the text, but the text color has to be
set to transparent. (Not supported in all browsers)

3

https://caniuse.com/?search=background-clip%3Atext

Cont. CSS

Figure 5: text

Note that background-clip has some compatibility issues with older browsers.

1.4 Viewport Units
Viewport units are a new set of units designed to be used in CSS for responsive design. They
are relative to the viewport width and height.

Viewport is the browser window size. 1vw = 1% of viewport width, 1vh = 1% of viewport
height.

1.5 Position
A CSS property that allows you to control the position of an element. It can take values like:

• static (default) - The element is positioned according to the normal flow of the document.
• relative - The element is positioned according to the normal flow of the document, and

then offset relative to itself based on the values of top, right, bottom, and left.
• absolute - The element is removed from the normal flow of the document, and no space

is created for the element in the page layout. It is positioned relative to its closest non
statically positioned ancestor if any; otherwise, it is placed relative to the initial containing
block.

• fixed - The element is removed from the normal flow of the document, and no space is
created for the element in the page layout. It is positioned relative to the initial containing
block established by the viewport, except when one of its ancestors has a transform,
perspective, or filter property set to something other than none, in which case that
ancestor behaves as the containing block.

◦ With fixed position give the element a width of 100% to make it cover the full width
of the viewport.

• sticky - The element is treated as relative positioned until it crosses a specified threshold,
at which point it is treated as fixed positioned.

When using position: relative; the element will be positioned relative to its normal position.

1 .relative-one {
2 position: relative;
3 top: 20px; /* Moves the element 20px down of its normal position */
4 left: 20px; /* Moves the element 20px right of its normal position */
5 }
6

7 .relative-two {
8 position: relative;
9 top: 20px;

4

Cont. CSS

10 bottom: 20px; /* No effect since the page flows from top to bottom */
11 /* Normally no one will use top and bottom together */
12 }
13

14 .relative-three {
15 position: relative;
16 left: 20px;
17 right: 20px; /* No effect since the page flows from left to right

unless you change it */↪→

18 /* Normally no one will also use right and left together
*/↪→

19 }

In static position, the top, right, bottom, and left properties have no effect.

When using position: absolute; the element will be positioned relative to the viewport,
unless its ancestor (parent or a parent of a parent) has a position property set to relative,
absolute, fixed, or sticky, in which case it will be positioned relative to its non statically
positioned ancestor.

1 .absolute-one {
2 position: absolute;
3 top: 20px; /* Moves the element 20px down of the top of the viewport

*/↪→

4 left: 20px; /* Moves the element 20px right of the left of the
viewport */↪→

5 }
6

7 .absolute-two {
8 position: absolute;
9 bottom: 0px;

10 right: 0px;
11 } /* Moves the element to the bottom right of the viewport */

When using position: relative the original place of the element will be reserved even if the
element is moved away from it.

The element can also span over other elements.

When using position: absolute the original place of the element will not be reserved.

To make an absolute child move relative to its parent give its parent a position different from
static, otherwise it will move relative to its closest positioned ancestor and if no positioned
ancestor is found it will move relative to the viewport.

When using position: fixed the original place of the element will not be reserved, and the
element will be positioned relative to the viewport.

When using position: sticky the original place of the element will be reserved until it reaches
a specified threshold (with scroll for example), at which point it is positioned relative to the
viewport.

When using position: sticky; the element will be positioned relative to its normal position
until it crosses a specified threshold, at which point it is positioned relative to the viewport.

Relative positioning is mostly used in animations because it allows you to control the position of

5

Cont. CSS

an element relative to its normal position, so you can move elements around without disrupting
the rest of the layout.

z-index property is used to specify the stack order of an element. An element with greater
z-index will be displayed above an element with a lower z-index.

The element with the greater z-index will be displayed above the element with the lower
z-index.

default value for z-index is auto, which is the default order at which elements were written in
the HTML code.

1 <div class="one"></div>
2 <div class="two"></div>
3 <div class="three"></div>

1 .one {
2 position: relative;
3 z-index: 1;
4 }
5

6 .two {
7 position: relative;
8 z-index: 3;
9 }

10

11 .three {
12 position: relative;
13 z-index: 2;
14 }

In the page .two will be displayed above .three and .one will be displayed below .three.

1.6 Stacking context
Stacking context is used to determine which elements appear in front of others. Elements with a
higher stack order (higher z-index value) appear in front of elements with a lower stack order.

If we have a collection of sibling elements, each with a z-index value, the element with the
highest z-index value will be displayed above the others. And if one of those elements has a
lower z-index value than its siblings, it will be displayed below them.

Important Note

If we have 3 siblings .one, .two, and .three which have z-index values of 1, 2, and
3 respectively, and element .one has a child .one-child with z-index value of 999,
.one-child will still be displayed below .two and .three because .two and .three
have higher z-index values than the parent .one. But if you remove the z-index value
from the parent .one and try to give .one-child a z-index value of 999 again, the
.one-child will be displayed above .two and .three.

6

Absolute Position

Also, if we still have the parent .one without a z-index value (the child element here
appears above its parent siblings) but we give it an opacity value like 0.5 for example,
the .one-child item will return again below .two and .three because the opacity
property affects the stacking context.

Coloring System:

• color name (eg. red)
• Hex #RRGGBB

• Hex with alpha #RRGGBBAA

• rgb(r, g, b)

• rgba(r, g, b, a) - a is the opacity

You can’t specify opacity with hex colors.

To hide an element You can use:

• display: none - Item space will be not be reserved
• visibility: hidden - Item space will be reserved
• opacity: 0 - Item space will be reserved

2 Absolute Position
Using absolute position we can make an element expand to the full width and height of the
page and make it cover the whole page.

1 .cover {
2 background-color: teal;
3 position: absolute;
4 top: 0;
5 right: 0;
6 bottom: 0;
7 left: 0;
8 }

Mostly we use positioning when we want to make a layered design, or to make an element fixed
in a position on the page without being affected by the scrolling and without affecting other
elements.

Absolute position can be used to make a layer appear on top of another layer, like for example
a “Sale” label on top of a product image.

It’s better to use percentage % with width and leave height as auto, you can also use vh unit
to make the element cover the full height of the viewport.

7

Session 6

Mohamed Emary

March 24, 2024

1 Some CSS Properties

1.1 Box Sizing
The box-sizing property allows us to include the padding and border in an element’s total
width and height.

1 div {
2 box-sizing: border-box;
3 }

So if your element width is 100px, and you give it a 5px border instead of the 100px getting
wider to 110px (not 105px because of left and right width), the 100px stays 100px and the 10px
border is added inside the 100px so the actual content width is 80px.

The default value for box-sizing is content-box.

Note that box-sizing does not include margin, only padding and border.

So how to solve this margin issue?

To solve this we can put the element inside a container with a border-box box-sizing, then we
give the container a padding. So the outer space for the element is the padding of the container.

1.2 Hover
To make an element interact with the mouse hover, we can use the :hover pseudo-class.

Pseudo-classes are keywords added to a selector that specifies a special state of the selected
elements. Pseudo-classes are used with a colon : behind them.

Remember that it’s only one colon : for pseudo-classes, not two because two colons :: are
used for pseudo-elements.

In this example when we hover on the button, the background color changes to red.

1 button:hover {
2 background-color: red;

1

Some CSS Properties

3 }

The general form when dealing with pseudo-classes is:

1 selector:pseudo-class {
2 property: value;
3 }

You can even make the hover on one element affect another element.

1 button:hover + p {
2 color: red;
3 }

1.3 Transition
To make a transition effect on an element, we can use the transition property.

Transition makes element changes state smoothly over a specified duration.

To make a transition effect on an element we need to specify 3 things:

• transition-property - The property we want to transition (ex: width).
• transition-duration - The duration of the transition (ex: 5s).
• transition-timing-function - The timing function. (optional)
• transition-delay - The delay before the transition starts (ex: 2s). (optional)

For example if we have an element that changes width on :hover we can make it transition
smoothly in 5 seconds like this:

1 div{
2 width: 100px;
3 transition-property: width;
4 transition-duration: 5s;
5 transition-timing-function: ease-in;
6 }
7

8 div:hover {
9 width: 300px;

10 }

The transition-timing-function is used to specify the speed curve of the transition effect.
The default value is ease.

transition-timing-function can have the following values:

Value Description

cubic-bezier a timing function that allows you to specify your own values
ease Default Specifies a transition effect with a slow start, then fast, then end slowly

(equivalent to cubic-bezier(0.25,0.1,0.25,1))
linear Specifies a transition effect with the same speed from start to end

(equivalent to cubic-bezier(0,0,1,1))

2

Some CSS Properties

Value Description

ease-in Specifies a transition effect with a slow start (equivalent to
cubic-bezier(0.42,0,1,1))

ease-out Specifies a transition effect with a slow end (equivalent to
cubic-bezier(0,0,0.58,1))

ease-in-out Specifies a transition effect with a slow start and end (equivalent to
cubic-bezier(0.42,0,0.58,1))

The function cubic-bezier takes 4 prameters:

• x1: The x-coordinate of the first control point
• y1: The y-coordinate of the first control point
• x2: The x-coordinate of the second control point
• y2: The y-coordinate of the second control point

It’s hard to define the transition curve using cubic-bezier so you can use this website to help
you.

Also this website will help you better understand each value for transition-timing-function.

Most of the time we don’t specify each property separately, instead we use the shorthand
transition property.

It takes the following values:

1 transition: property duration timing-function delay;

It’s important to keep the order duration and delay values since both take time values.

you can also specify transition effect for more than one property in the same line.

1 transition: width ease-in 2s, height 4s, background-color 1s;

If all properties have the same duration you can specify it once.

1 transition: all 2s;

This will make all properties transition in 2 seconds.

for example you can use it in a code like this:

1 div {
2 width: 100px;
3 height: 100px;
4 background-color: blue;
5 transition: all 2s;
6 }
7 div:hover {
8 width: 300px;
9 height: 300px;

10 background-color: red;
11 }

This will make the width, height, and background-color transition take 2 seconds.

3

https://cubic-bezier.com/
https://www.the-art-of-web.com/css/timing-function/

Some CSS Properties

You can even ignore all and just use the duration value and this will make all properties
transition in the same duration specified inside transition.

Notice that in the last code, the transition effect was specified inside div and not inside
div:hover. This is because we want our transition effect to be applied to the element itself and
not only in hover state.

1.4 Transform
Transform is a CSS that allows us to move elements. It can take the following values:

• rotate() - rotates an element. It can take a value in degrees like rotate(45deg).
• rotateX() - rotates an element around its X-axis.
• rotateY() - rotates an element around its Y-axis.
• scale() - scales an element. It can take two values like scale(2,2) which is the scale

factor for the width and height.
• scaleX() - scales an element horizontally (width).
• scaleY() - scales an element vertically (height).
• skew() - skews an element. It can take two values like skew(30deg, 20deg) which is the

skew factor for the horizontal and vertical axis.
• skewX() - skews an element horizontally.
• skewY() - skews an element vertically.
• translate() - moves an element. It can take two values like translate(50px, 100px)

which is the distance to move the element horizontally and vertically.
• translateX() - moves an element horizontally.
• translateY() - moves an element vertically.

The transform by default happens around the center of the element, but you can change the
origin of the transform using transform-origin, for example you can make it top right or
bottom left.

You can also apply transition to the transform property to make the transform effect smooth.

1 div {
2 transition: transform 4s;
3 }
4

5 div:hover {
6 transform: rotate(360deg);
7 }

With skew you can make pretty designs inside your website. Search for skew web design.

You can use negative values in each one of these functions

You can apply more than a transform function to an element but it should be on the same
line and separated by a space like transform: rotate(45deg) translate(50px, 100px);,
otherwise the last transform will override the previous ones.

4

https://www.google.com/search?q=skew+web+design&tbm=isch

IFrame

For example using transform: rotate(45deg); then using transform: translate(50px,
100px); the translate will override the rotate so you will not see the rotation effect.

1.5 Overflow
The overflow property specifies what happens if content overflows an element’s box. For
example a text inside a div that is too much to fit inside the div so it overflows.

Using this property you can control the overflow of the content in four ways:

• visible - The overflow is not clipped. It renders outside the element’s box. (default)
• hidden - The overflow is clipped, and the rest of the content will be invisible.
• scroll - The overflow is clipped, and a scrollbar is added to see the rest of the content.
• auto - Similar to scroll, but it adds a scrollbar only when necessary.

You can also control the overflow for each direction separately using overflow-x and
overflow-y.

With overflow property we can solve some issues we faced before:

First: Margin Collapse.

Overflow & Margin Collapse

We already know margin collapse from Session 4, but a quick reminder:
Margin Collapse happens when two margins touch, they collapse into a single margin.
This problem happens only with top and bottom margins.

To solve margin collapse problem:
• Use padding on the parent container, instead of margin on the child container.
• Use border on the parent container.
• Use overflow: auto; on the parent container.

Second: float related issues.
Overflow & Float

We know from Session 4 that float layout has two issues:
1. Floating elements are removed from the normal flow of the document, so parent

element no longer contains the floated element. Example downside is if the container
has a background color, it will not expand to contain the floating element.

2. The last floating element have to be cleared, otherwise it will affect the layout of
the next element.

We can solve the first issue only using float
just give the parent container overflow: auto; property.

2 IFrame
IFrame allows us to embed another HTML page inside our current HTML page.

The syntax for IFrame is:

5

Important Exercise

1 <iframe src="URL"></iframe>

You can also specify the width and height of the IFrame.

1 <iframe src="URL" width="500" height="500"></iframe>

You mostly will find embed option in the share menu of many websites like YouTube and Google
Maps.

3 Important Exercise
Watch transform exercise videos on google drive.

6

Summary

4 Summary
In this session, we covered several CSS properties like:

• Box Sizing: This property allows us to include the padding and border in an element’s
total width and height by giving it border-box value. The default value is content-box
and it does not include margin.

• Hover: This pseudo-class allows an element to interact with the mouse hover. Pseudo-
Classes are used with a colon : behind them.

• Transition: This property allows for smooth state changes over a specified duration. It
requires the specification of the transition property, duration, timing function (optional),
and delay (optional).

• Transform: This property allows us to move elements. It can take several values
such as rotate, scale, skew, and translate. The transform origin can be changed using
transform-origin.

• Overflow: This property specifies what happens if content overflows an element’s box. It
can be set to visible, hidden, scroll, or auto.

◦ We also discussed how to solve margin collapse and float related issues using
overflow: auto; property on the parent container.

We have also covered the IFrame concept which allows us to embed another HTML page inside
our current HTML page.

7

Session 7

Mohamed Emary

March 28, 2024

1 Shadow property
It’s a CSS property that adds a shadow to an element.

An element can have more than one shadow. The shadow property syntax is:

1 shadow: x-shadow y-shadow blur spread color inset;

inset makes the shadow appear inside the element.

To give an element like h1 a shadow, you can use the text-shadow property, It takes four values:

1 text-shadow: x-shadow y-shadow blur color;

The positive x direction is to the right and the positive y direction is down. You can use negative
values to move the shadow in the opposite direction.

2 Gradient
It’s a value that can be used with the background property to create a gradient background.
The syntax is:

1 background: linear-gradient(direction, color1, color2, ...);

The direction can be to top, to bottom, to left, to right, to top left, to top right,
to bottom left, to bottom right, or an angle in degrees like 45deg.

Browser dev tools can help you to create gradients like specifying the angle.

Each color inside the linear-gradient can also take a percentage value to specify the position
of the color.

1 background: linear-gradient(to right, red 20%, blue 50%, green 80%);

You can also use opacity with the colors so if you have a background image you can see it
through the gradient.

1 background: url(./path/to/image), linear-gradient(to right, rgba(255, 0, 0,
0.5), rgba(0, 0, 255, 0.5));↪→

1

Animation

radial-gradient is another type of gradient that creates a circular gradient. The syntax is:

1 background: radial-gradient(shape size at position, color1, color2, ...);

3 Before and After pseudo-elements
They are used to add content before or after an element. They are used with the ::before and
::after selectors.

An element can’t have more than one ::before or ::after pseudo-element.

The content of the pseudo-element can be text, an image, or nothing.

1 element::before {
2 content: "before";
3 }

Example:

If you have a h1 element and you want to add a horizontal line before and after it but it should
be away from the text by 10px, you can use the following CSS:

1 h1{
2 text-align: center;
3 position: relative;
4 }
5 /* review the code
6 h1::before, h1::after{
7 content: "";
8 position: absolute;
9 top: 50%;

10 width: 10%;
11 height: 1px;
12 background-color: black;
13 } */

4 Selection
It’s a CSS property that allows you to style the selected text. The syntax is:

1 selector::selection {
2 color: white;
3 background-color: red;
4 }

::selection is a pseudo-element so it has the specificity of a pseudo-element which is the same
as an element.

Pseudo-elements take :: while pseudo-classes take :.

5 Animation
If you want to animate an element, you can use @keyframes to define the animation and the
animation property to apply the animation to the element.

2

media queries

The syntax of @keyframes is:

1 @keyframes animation-name {
2 from {
3 property: value;
4 }
5 to {
6 property: value;
7 }
8 }
9

10 /* You can also use percentages */
11

12 @keyframes animation-name {
13 0% {
14 property: value;
15 }
16 50% {
17 property: value;
18 }
19 100% {
20 property: value;
21 }
22 }

The animation property syntax is:

1 selector {
2 animation: animation-name duration delay iteration-count;
3 }

Always keep the order of duration and delay.

Example:

1 @keyframes change-colors {
2 from {
3 background-color: red;
4 }
5 to {
6 background-color: blue;
7 }
8 }
9

10 .animated {
11 animation: change-colors 5s 1s infinite;
12 }

6 media queries

3

Session 8

Mohamed Emary

March 31, 2024

1 Flex Display
display: flex is a CSS property that makes the element a flex container. The flex container
is the parent element that contains the flex items.

1.1 Flex Direction
flex-direction property specifies the direction of the flexible items. It can be set to:

• row (default)
• row-reverse

• column

• column-reverse

The row will be from left to right if the page direction is ltr (left to right) and from right to
left if the page direction is rtl (right to left).

row-reverse will be from right to left if the page direction is ltr and from left to right if
the page direction is rtl.

The same applies to column and column-reverse.

1.2 Flex Wrap
flex-wrap property specifies whether the flexible items should wrap or not. It can be set to:

• nowrap (default)
• wrap

• wrap-reverse

1.3 Flex Flow
flex-flow property is a shorthand property for the flex-direction and flex-wrap prop-
erties. It takes two values: flex-direction and flex-wrap, so it is written as flex-flow:

1

Flex Display

flex-direction flex-wrap.

1.4 Order
order property specifies the order of the flexible items. It takes a number as a value. The
default value is 0. The items are ordered based on the value of the order property. The items
with the lower values will be placed before the items with the higher values.

1.5 Placing flex items
justify-content property specifies how the flexible items are placed in the flex container. It
can be set to :

• flex-start

• flex-end

• center

• space-between

• space-around

• space-evenly

align-items property specifies how the flexible items are placed in the flex container. It can
be set to:

• stretch (default)
• flex-start

• flex-end

• center

• baseline - aligns the items based on their baselines which is the line that the letters sit
on

justify-content property works on the main axis, while align-items property works on the
cross axis.

The main axis is the axis defined by the flex-direction property, while the cross axis is the
axis perpendicular to the main axis.

align-content property specifies how the flexible items are placed in the flex container when
there is extra space in the cross axis. It can be set to:

• stretch (default)
• flex-start

• flex-end

• center

• space-between

• space-around

align-content property only works if the flex items are wrapped.

2

Flex Display

1.6 Row & Column Gaps
row-gap property specifies the space between the rows of a grid layout. column-gap property
specifies the space between the columns of a grid layout.

The gap property is a shorthand property for the row-gap and column-gap properties. It takes
two values: row-gap and column-gap, so it is written as gap: row-gap column-gap.

All these properties only work if the parent element has the display: flex property.

1.7 Grow & Shrink
flex-grow property specifies how much the item will grow relative to the rest of the flexible
items. It takes a number as a value.

flex-shrink property specifies how much the item will shrink relative to the rest of the flexible
items. It takes a number as a value.

The default value for flex-grow is 0, and the default value for flex-shrink is 1.

For example if you have 4 items inside a flex container and you have extra space of 300px and
you set the flex-grow property of one item to 1 and the flex-grow property of the other item
to 2, the first item will take 100px and the other items will take 200px each.

Another example, if you have 4 items inside a flex container and you lack space of 300px and
you set the flex-shrink property of one item to 1 and the flex-shrink property of the other
item to 2, and you set the rest of the items to 0, the first item will shrink by 100px and the
other items will shrink by 200px each.

1.8 Flex Basis
flex-basis property specifies the initial size of the item before the remaining space is distributed.

The value of flex-basis can be a width or height depending on the flex-direction prop-
erty, so if the flex-direction is row, the value of flex-basis will be a width, and if the
flex-direction is column, the value of flex-basis will be a height.

1.9 Flex Shorthand
flex is a CSS property that allows us to create a flexible layout. It is a shorthand property for
the flex-grow, flex-shrink, and flex-basis properties.

3

Session 9

Mohamed Emary

April 4, 2024

1 Grid Layout
Grid is a CSS layout module that allows you to create two-dimensional grid-based layouts.

Most of the time we use grid used with 2 dimensional layouts, and flex with 1 dimensional
layouts.

This image will help you understand the difference:

Figure 1: Grid Vs Flexbox

1.1 Display grid
To use grid, first we need to give the parent element a display: grid property.

Then we define the columns and rows of the grid.

1 .container {
2 display: grid;
3 grid-template-columns: 200px 200px 200px;
4 }

1

Grid Layout

1.2 Grid Template Columns
200px 200px 200px means that we have 3 columns, each 200px wide, and if we have extra
items they will wrap to the next row.

We can also use percentage values like 33% 33% 33%, or use auto to make the columns auto-
matically adjust to the content.

1 .container {
2 display: grid;
3 grid-template-columns: auto auto auto;
4 }

We can also use fractional units like 1fr 1fr 1fr to make the columns take up equal space.

1 .container {
2 display: grid;
3 grid-template-columns: 1fr 1fr 1fr;
4 }

This will give use 3 equally spaced columns.

We can also give the middle column a double width by using girl-template-columns: 1fr
2fr 1fr.

And we can mix units like grid-template-columns: 1fr 200px auto. Or grid-
template-columns: 1fr 20% 1fr so each 1fr will take up 40% of the width available.

1.3 Grid Template Rows
Similarly we can define the rows of the grid using grid-template-rows.

1 .container {
2 display: grid;
3 grid-template-rows: 100px 100px 100px;
4 }

Every thing we can do with columns, we can do with rows.

Also the default hight of a row is auto, so it will adjust to the content.

1.4 Grid Template Shorthand Property
We can use the grid-template shorthand property to define both columns and rows.

It’s used in the form: grid-template: rows / columns.

1 .container {
2 display: grid;
3 grid-template: 100px 100px / 1fr 1fr 1fr;
4 }

So this will give us 2 rows each taking 100px high, and 3 columns each taking 1fr of the width.

2

Grid Layout

1.5 What is the difference between auto and fr?
auto will take up the space needed by the content, while 1fr will take up the remaining space
after the auto columns have been calculated.

1.6 Repeat function
We can use the repeat() function to repeat the same column multiple times.

The repeat function takes two arguments, the number of times to repeat, and the size of each
row/column.

1 .container {
2 display: grid;
3 grid-template-columns: 200px repeat(3, 1fr);
4 }

This will give us 4 columns with the first one taking 200px and the next 3 taking 1fr.

1.7 Grid Template Areas
We can also use grid-template-areas to define the layout of the grid.

1 .container {
2 display: grid;
3 grid-template-areas:
4 "header header header"
5 "sidebar content content"
6 "footer footer footer";
7 }

Then we assign the areas to the elements using the grid-area property.

1 .header {
2 grid-area: header;
3 }
4

5 .sidebar {
6 grid-area: sidebar;
7 }
8

9 .content {
10 grid-area: content;
11 }
12

13 .footer {
14 grid-area: footer;
15 }

3

Grid Layout

1.8 Item Placement
1.8.1 All Items

We can use justify-content to align the items horizontally, and align-items to align them
vertically.

Unlike CSS flexbox where justify-content aligns the items along the main axis and
align-items along the cross axis, and the main axis and cross axis can be either horizontal or
vertical depending on the direction of the flex container, in CSS grid justify-content always
aligns the items along the x-axis and align-content along the y-axis.

Both justify-content & align-content can take values like:

• start (default)
• center

• end

• space-between

• space-around

• space-evenly

We also have a shorthand property place-content which combines both justify-content
and align-content.

It works in the form: place-content: align-content justify-content.

So this:

1 align-content: space-between;
2 justify-content: center;

Is equivalent to:

1 place-content: space-between center;

We also have justify-items and align-items which are used to align the items inside the
grid cells.

1 .container {
2 display: grid;
3 grid-template-columns: 1fr 1fr 1fr;
4 justify-items: center;
5 align-items: center;
6 }

justify-items and align-items can take values like:

• stretch (default)
• center

• start

• end

stretch will stretch the items to fill the cell.

4

Grid Layout

We also have a shorthand property place-items which combines both justify-items and
align-items.

It works in the form: place-items: align-items justify-items.

So this:

1 align-items: center;
2 justify-items: start;

Is equivalent to:

1 place-items: center start;

This image will help you understand the difference between justify-content, align-content
and justify-items, align-items:

Figure 2: Content Vs Items

1.8.2 Single Item

We can use align-self and justify-self to align a single item inside the grid cell.

1 .item1 {
2 align-self: center;
3 justify-self: start;
4 }

5

Grid Layout

align-self and justify-self can take values like:

• stretch (default)
• center

• start

• end

stretch will stretch the item to fill the cell.

We also have a shorthand property place-self which combines both justify-self and
align-self.

It works in the form: place-self: align-self justify-self.

So this:

1 align-self: center;
2 justify-self: start;

Is equivalent to:

1 place-self: center start;

1.9 Grid Gap
If we want to only make a gap between the rows we can use row-gap and for the columns we
can use column-gap.

The shorthand property gap can be used to define both the row and column gap. It takes two
values, the row gap and the column gap.

It takes either one value for both row and column gap, or two values for row then column gap.

So using gap: 20px 10px; will give us a 20px gap between the rows and a 10px gap between
the columns, and gap: 20px; will give us a 20px gap between both rows and columns.

1.10 Implicit Vs Explicit Grid
The explicit grid is the grid that we define using grid-template-columns and grid-
template-rows.

The implicit grid is the grid that is created when we have more items than the number of
columns and rows we defined.

By default, the implicit grid will create new rows to fit the extra items.

We can control how the implicit grid behaves using the grid-auto-rows and grid-auto-
columns properties.

So for example using grid-auto-rows: 100px; will make any extra rows created by the implicit
grid 100px high.

If you give grid-auto-rows more than one value, it will create rows with the height of the first
value, then the second value, and so on.

For example using grid-auto-rows: 100px 200px; will make the first extra row 100px high,
and the second extra row 200px high and so on.

6

Grid Layout

1.11 Minmax function
We can use the minmax() function to define the minimum and maximum size of a row or column.

The minmax() function takes two arguments, the minimum size and the maximum size.

Using grid-auto-rows: minmax(100px, auto); any extra rows created by the implicit grid
will have a minimum height of 100px and the maximum height will adjust to the content.

1.12 Cell Spanning
We can make an item span multiple rows or columns using the grid-row-start, grid-row-end,
and grid-column-start, grid-column-end properties.

These properties take the line number where the item should start and the line number where it
should end.

1 .item1 {
2 grid-column-start: 1;
3 grid-column-end: 3;
4 }

This will make the item span from the first column to the third column.

We also have shorthand properties grid-row and grid-column that can be used to define both
the start and end lines.

1 .item1 {
2 grid-column: 1 / 3;
3 }

So this is equivalent to the previous example.

Some Notes

If we have only 3 columns and used grid-column: 1 / 5; the item will span from the
first column to the fifth column, and the extra columns will be created by the implicit
grid.
So you can use the property mentioned before grid-auto-columns to define the width
of these columns.

To make an items span the whole row we can use grid-column: 1 / -1;.
We can also use span keyword to make the item span multiple columns or rows,
grid-column: 2/ span 2; will make the item start from the second column and span
2 columns.

The same thing can be done with rows.

1.13 Naming Rows and Columns
We can name the rows and columns when defining the grid using the grid-template-rows and
grid-template-columns properties.

7

CSS Variables

1 .container {
2 display: grid;
3 grid-template-columns: [startCol] 100px [col2] 100px [col3] 100px

[endCol];↪→

4 grid-template-rows: [startRow] 100px [row2] 100px [row3] 100px [endRow];
5 }

Then we can use these names to place the items.

1 .item1 {
2 grid-column: startCol / col3;
3 grid-row: startRow / row3;
4 }

1.14 Parent Vs Child Properties
These properties are used with the grid container:

1. grid-template-columns

2. grid-template-rows

3. grid-template

4. grid-template-areas

5. justify-content

6. align-content

7. place-content

8. justify-items

9. align-items

10. place-items

11. grid-auto-rows

12. grid-auto-columns

13. row-gap

14. column-gap

15. gap

16. grid-auto-rows

17. grid-auto-columns

While these properties are used with the grid items:

1. align-self

2. justify-self

3. place-self

4. grid-row-start

5. grid-row-end

6. grid-row

7. grid-column-start

8. grid-column-end

9. grid-column

1.15 Websites to Help You Create Grid Layouts
There are many websites that help you create grid layouts visually like:

• CSS Grid Generator
• Grid Layout Generator

2 CSS Variables
CSS variables are used to store reusable values.

8

https://cssgrid-generator.netlify.app/
https://grid.layoutit.com/

CSS Variables

They are defined using the -- prefix.

1 :root {
2 --main-color: red;
3 }

Then we can use them in the CSS file using the var() function.

1 h1 {
2 color: var(--main-color);
3 }

We can also define fallback values for the variables.

1 h1 {
2 color: var(--main-color, blue);
3 }

If the --main-color variable is not defined, the color will be blue.

You can also use another variable as a fallback value.

1 h1 {
2 color: var(--main-color, var(--secondary-color, blue));
3 }

Since our variables are scoped we defined inside :root so they can be accessed from anywhere
in the CSS file.

The scope of a variable is the area where it can be accessed. For example if we define a variable
inside a div it will only be accessible inside that div.

You can store any value in a variable like colors, font sizes, font family, height, width, etc.

The :root is the same as the html element, so we can use :root or html to define the variables
but since :root is a pseudo-class and html is an element, it’s better to use :root since it has
higher specificity.

Don’t define your variables inside body as you may have more than one body element in your
HTML file (we will get to this later).

When writing a CSS variable with more than one word we use a hyphen - to separate the words.
You can also use capital letters but it’s not recommended.

9

Summary

3 Summary

3.1 Grid Layout
• Grid layout is a CSS module for creating 2D layouts.
• Use display: grid on the parent element.
• Define columns and rows using grid-template-columns and grid-template-rows.

◦ Values can be pixels (px), percentages (%), auto (fits content), or fr (fractions of
remaining space).

3.2 auto vs. fr
• auto takes up the space needed by the content.
• 1fr takes up the remaining space after auto columns are sized.

3.3 Grid Template Areas
• Define areas using grid-template-areas property.
• Assign grid items to areas using grid-area property.

3.4 Item Placement
• justify-content & align-content align items within the container.

◦ Works along x and y axis respectively.
◦ Values include start, center, end, space-between, etc.

• justify-items & align-items align items within grid cells.
◦ Values include stretch (default), center, start, end.

• align-self & justify-self align a single item within its cell.
• Shorthand properties available for combining these: place-content, place-items,

place-self.

3.5 Grid Gap
• row-gap and column-gap define gaps between rows and columns respectively.
• gap is a shorthand property for both.

3.6 Implicit vs. Explicit Grid
• Explicit grid is defined using grid-template-columns and grid-template-rows.
• Implicit grid creates rows for extra items.
• grid-auto-rows and grid-auto-columns control implicit grid behavior.

3.7 Cell Spanning
• Use grid-column-start, grid-column-end, grid-row-start, and grid-row- end to

span cells.

10

Summary

• Shorthand properties (grid-row, grid-column) available.

3.8 Naming Rows & Columns
• Define named rows and columns within grid-template-rows and grid-template-

columns.
• Use these names for item placement with grid-row and grid-column.

3.9 Parent vs. Child Properties
• Parent properties define the overall grid layout. Listed Here.

• Child properties define individual item placement.

3.10 Sites for Creating Grid Layouts
• CSS Grid Generator
• Grid Layout Generator

3.11 CSS Variables
• Store reusable values with -- prefix.
• Use var() function to reference variables in CSS.
• Define fallback values for variables.
• Variables are scoped (accessible within their defined area).
• Use :root (same as html) for global access.
• Use hyphens (-) in multi-word variable names.

11

https://cssgrid-generator.netlify.app/
https://www.layoutit.com/cn

Session 10

Mohamed Emary

April 7, 2024

1 Psuedo Classes
Pseudo classes are used to define a special state of an element. They have the same specificity
as regular classes.

• :first-child - Selects the first child of an element
• :last-child - Selects the last child of an element
• :nth-child(n) - Selects the nth child of an element
• :not(selector) - Selects all elements that do not match the given selector

The order of the nth-child is relative to its siblings inside the parent element.

1 <div class="parent">
2 <div class="child">1</div>
3 <div class="child">2</div>
4 <div class="child">3</div>
5 <div class="child">4
6 <div class="child">1</div>
7 <div class="child">2</div>
8 </div>
9 </div>

Using .child:first-child here will select the first child of the parent element.

Using .child:nth-child(2) here will select the second child of the parent element, and the
second child of the 4th child of the parent element. .child here specifies the class of the element
we want to select.

Using .child:nth-child(2n) will select all even children of the parent element, and using
.child:nth-child(2n+1) will select all odd children of the parent element.

The :nth-child pseudo class has some compatibility issues with older browsers.

:not(.item) will select all elements that do not have the class item.

1

Some Extra Selectors

2 CSS Combinators
.item > p - Selects all <p> elements that are direct children of a <div> element

1 <div class="item">
2 <p>First paragraph</p> // Will be selected
3 <div>
4
5 <p>Second paragraph</p> // Will not be selected
6
7 </div>
8 </div>

.item + p - Selects the first <p> element that is placed immediately after an .item element

1 <div>
2 <div class="item"></div>
3 <p>Second paragraph</p> // Will be selected
4 <p>First paragraph</p> // Will not be selected
5 </div>

.item ~ p - Selects all <p> elements that are siblings of an .item element

1 <div>
2 <div class="item"></div>
3 <p>Second paragraph</p> // Will be selected
4 <p>Second paragraph</p> // Will be selected
5 </div>

using * will select all elements.

So in summary:

• > Works wil direct children
• + Works with the first sibling
• ~ Works with all siblings

Note that the space is a combinator as well, and it selects all descendants. for
example .item p will select all <p> elements that are descendants of an .item
element.

3 Some Extra Selectors

3.1 Attribute Selectors
We can select elements based on their attributes.

• [attribute] - Selects all elements with a specific attribute

• [attribute=value] - Selects all elements with the specified attribute and value

• div[class] - Selects all <div> elements with a class attribute

• div[classˆ="it"] - Selects all <div> elements whose class attribute value begins with
it. So for example, it will select <div class="item"> or <div class="item-1"> and so
on.

2

Extra CSS Properties

• div[class$="em"] - Selects all <div> elements whose class attribute value ends with em.
So for example, it will select <div class="item"> or <div class="problem"> and so
on.

• div[class*="it"] - Selects all <div> elements whose class attribute value con-
tains the substring it. So for example, it will select <div class="item"> or <div
class="visited"> and so on.

4 Extra CSS Properties

4.1 Scroll Behavior
scroll-behavior: smooth; - Adds a smooth scrolling effect to the page

It can be used with an anchor tag to scroll to a specific part of the page smoothly.

4.2 Object Fit
Since images are replaced elements they can be styled using the object-fit property.

The default value is fill, which will stretch the image to fit the container.

Figure 1: fill

We can change it to contain to make the image fit the container without stretching it. But it
will look something like this:

Figure 2: contain

3

Extra CSS Properties

Using object-fit: cover; will make the image cover the container without stretching it. It
will look something like this:

Figure 3: cover

Using object-fit: none; will add the image with its original size without stretching it. It
will look something like this:

Figure 4: none

Using object-fit: scale-down; will compare between contain and none and will use the
smaller one. Our image is larger than the container so it will look the same as contain.

Figure 5: scale-down

4

Extra CSS Properties

4.3 Nesting Selectors
We can nest selectors in CSS. For example:

1 .parent {
2 color: red;
3 .child {
4 color: blue;
5 p{
6 font-family: Arial;
7 }
8 &:hover {
9 color: green;

10 }
11 }
12 }

This will make the text color of the .parent element red, and the text color of the .child
element inside the parent element blue.

We can have nested selectors inside nested selectors. For example, the p element inside the
.child element will have the font family of Arial.

The & symbol is used to refer to the parent selector. So &:hover will select the parent element
when it is hovered which is the .child element in this case and change its text color to green.

4.4 Important Property
We can use the !important property to override any other style. It has the highest specificity
even higher than inline styles.

1 p {
2 color: red !important;
3 }

This will make the text color of p element red even if it has another color specified in the inline
style.

If two same selectors have the !important property, the one that comes later will override the
previous one. (The last one will be applied)

1 p {
2 color: red !important;
3 }
4 p {
5 color: blue !important;
6 }

This will make the text color of p element blue.

4.5 Inherit and Initial
Some properties are inherited by default. For example, font family, font size, and text color are
inherited. So if we specify the font family for the body element, all the text inside the body
element will have the same font family.

5

Solving Compatibility Issues

However, other properties like background color are not inherited, so we have to specify them
for each element.

We can use the inherit keyword to make a property inherit the value of its parent element.

1 .parent{
2 padding-top: 20px;
3 }
4

5 .child{
6 padding-top: inherit;
7 }

The child element will inherit the padding-top value of the parent element, so it will have a
padding top of 20px.

The initial keyword resets the property to its default value if it’s inherited. For example, if
we have a color property in the body element, and we want to reset it to its default value in
the p element, we can use the initial keyword.

1 body{
2 color: red;
3 }
4

5 p{
6 color: initial;
7 }

The text color of the p element will be the default color which is black.

5 Solving Compatibility Issues

5.1 CSS
With CSS3, alot of new features were added, and some of them are not supported by older
browsers. So we have to make sure that our website is compatible with all browsers.

To solve compatibility issues, we need to used prefixes for some properties.

• -webkit- for Chrome, Safari, and modern Opera
• -moz- for Firefox
• -ms- for Internet Explorer
• -o- for Opera

For example, linear-gradient is a CSS3 property that is not supported by all browsers. So
we have to add prefixes for it.

1 background: -webkit-linear-gradient(red, blue);
2 background: -moz-linear-gradient(red, blue);
3 background: -ms-linear-gradient(red, blue);
4 background: -o-linear-gradient(red, blue);
5 background: linear-gradient(red, blue);

6

Font Awesome Icons

And it’s important to add the unprefixed version at the end, so that the browser will use it
if it supports it.

Compatibility issues are browser-specific, not web-engine-specific. For example, Chrome and
Opera use the same engine, but they have different compatibility issues.

We can use a tool like Autoprefixer to add prefixes automatically to our CSS code.

6 Semantic HTML
HTML5 Introduced semantic tags like:

• <header> - For page header or section header
• <footer> - For page footer or section footer
• <section> - For Sections of a page
• <main> - For the main content of a page (Can’t be repeated)
• <nav> - For navigation bar
• <mark> - For highlighted text
• <figcaption> - For figure caption
• <article> - For articles or blog posts
• <aside> - For content aside from the content it is placed in

Semantic tags like <header> have meaning, while non-semantic tags like <div> don’t have
meaning.

These elements are not supported by older browsers.

They are important for SEO and accessibility, so we have to make sure that they are supported
by all browsers.

7 Font Awesome Icons
Sometime we need to add icons to our website, icons like phone, map, email, logo, etc. We can
use images for that, but images are not scalable and they are larger in size which is not good for
the website performance, So to solve this issue we can use an icons library like font awesome.

Font Awesome is a library of vector graphics icons that we can use in our website.

Vector graphics are images that can be scaled to any size without losing quality. They are also
smaller in size than raster images so it will not affect the website performance.

It allows you to use icons like these:

í ♥ ' + � � Ö
 ¯ ò � � Ð § « j Å = « -

To use font awesome we can use any of the following two methods:

Method 1: Using CDN

Visit font awesome page on cdnjs and copy the link of the all.min.css file with the version
you want of font awesome library.

Then link it to your page as a stylesheet like below:

7

https://autoprefixer.github.io/
https://cdnjs.com/libraries/font-awesome

Font Awesome Icons

1 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax
/libs/font-awesome/6.5.2/css/all.min.css">↪→

This will add all font awesome icons, but if you want to add only some icons, for example,
brands icons only you can copy its link from cdn too like this:

1 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax
/libs/font-awesome/6.5.2/css/brands.min.css">↪→

Method 2: Downloading the files

1. Download the font awesome compressed file from here then extract it.
2. Copy the all.min.css file from the css folder and paste it in your project CSS folder.
3. Copy the webfonts folder from the extracted folder and paste it in your project folder.
4. Add the following link to your HTML file:

1 <link rel="stylesheet" href="./css/all.min.css">

After completing any of the above methods, we can use font awesome icons in our HTML file.

To use a font-awesome icon like , we have to use the <i> tag with the fa class and the icon
name class.

1 <i class="fa-brands fa-apple"></i>

The fa-brands class is used to specify the category of the icon, and the fa-apple class is used
to specify the name of the icon.

The font-awesome icons are treated as text, so we can style them using text properties like
color, font-size.

We can even add hover effects to them.

1 .fa-apple {
2 color: blue;
3 font-size: 30px;
4 }
5 .fa-facebook:hover {
6 color: darkblue;
7 }

You can resize them using classes too like fa-lg, fa-2x, fa-3x, fa-4x, fa-5x, fa-6x, fa-7x,
fa-8x, fa-9x, fa-10x. Some of these classes make icons appear inline, while others make them
appear as block.

To give our icons the same width, we can use the fa-fw (Font-Awesome Fixed Width) class.

You can also animate icons using some classes like fa-beat, fa-spin, fa-pulse.

There a lot more you can do like stacking icons, making icons appear inline or block, and more.
You can see all that in the font-awesome documentation from here

8

https://fontawesome.com/download
https://docs.fontawesome.com/web/

Summary

8 Summary
1. Pseudo-Classes:

• They are used to target specific element states, not just element types.
◦ Examples: :first-child (selects first child element), :last-child (selects last

child element), :nth-child(n) (selects nth child element), :not(selector) (selects
elements not matching a selector).

2. CSS Combinators:

• They are used to combine selectors and target elements based on their structure in the
HTML document.

◦ > (greater than): selects direct children of an element.
◦ + (plus): selects the first sibling element immediately after a specific element.
◦ ~ (tilde): selects all sibling elements of a specific element.
◦ Space: selects all descendant elements.

3. Attribute Selectors:

• They are used to target elements based on their attribute presence or specific attribute
values.

◦ [attribute]: selects elements with a specific attribute.
◦ [attribute=value]: selects elements with a specific attribute and value.
◦ Selectors exist for elements starting with ˆ=, ending with $=, or containing *= a

specific value.

4. Extra CSS Properties:

• scroll-behavior: smooth;: creates a smooth scrolling effect on the page.
• object-fit: controls how images are displayed within their container, it can be:

◦ contain

◦ cover

◦ none

◦ scale-down

5. Nesting Selectors:

• Allows for targeting styles based on the element hierarchy in HTML.
• The & symbol within nested selectors refers to the parent selector.

6. Important Property:

• !important: overrides any other style rule, even inline styles, due to its high specificity.

7. Inherit and Initial:

• Properties can be inherited from parent elements or reset to their default values.
◦ inherit: makes a property inherit the value from its parent element.
◦ initial: resets a property to its default value.

8. Solving Compatibility Issues:

9

Summary

• To solve compatibility issues of some CSS3 properties we can use prefixes:
◦ Prefixes are introduced for properties not supported by older browsers (-webkit-,

-moz-, -ms-, -o-).
◦ Tools like Autoprefixer can automate adding prefixes.

9. Semantic HTML:

• HTML tags with meaning used for better SEO and accessibility.
◦ Examples: <header>, <footer>, <section>, <main>, <nav>, etc.

10. Font Awesome Icons:

• Explains how to integrate Font Awesome, a library of vector graphics icons, into your
website.

◦ Methods for including Font Awesome using a CDN or downloading files.
◦ How to use Font Awesome icon classes within HTML tags.
◦ Styling and customizing Font Awesome icons with CSS.

10

http://autoprefixer.github.io/
https://fontawesome.com/

Session 11

Mohamed Emary

April 14, 2024

1 rem & em Units

1.1 rem
rem is a relative unit of length. It is relative to the root element’s font-size.

By default, the root element is the html element and it has a font-size of 16px so a 1rem is
equal to 16px.

If you change the root font size to 20px, 1rem will be equal to 20px.

1 html { /* You can also use :root */
2 font-size: 20px;
3 }
4

5 h1 {
6 font-size: 2rem; /* 40px */
7 }

1.2 em
em is a relative unit of length. It is relative to the font-size of the parent element, and the parent
element can still be the root element.

If you have the following HTML:

1 <div>
2 <p>Some text</p>
3 </div>

And the following CSS:

1 div {
2 font-size: 20px;
3 }
4

5 p {
6 font-size: 1em; /* 20px */
7 }

Here the root element still has a font-size of 16px, but em is relative to the parent element,

1

Bootstrap

which is the div element with a font-size of 20px.

1.3 Which unit is better with each property?
• With width It’s better to use percentages and vh with the first section.
• With height It’s better to leave it as auto.
• With margin, padding, border, and font-size It’s better to use rem or em.

2 Calc Function
calc() is a CSS function that can be used to perform simple arithmetic operations.

1 div {
2 width: calc(100% / 4);
3 }

You can even use it to mix different units.

Like this:

1 div {
2 width: calc(100% - 20px);
3 }

Or:

1 div {
2 width: calc(5vw - 10px);
3 }

Another usefull example is that if you have 4 div inside a container and each of them has a
margin of 10px and width of 25%, you can use calc() to calculate the width of the divs so they
fit inside the container without going into the next line.

1 div {
2 width: calc(100% / 4 - 20px);
3 margin: 10px;
4 }

3 Bootstrap

3.1 What is Bootstrap?
Bootstrap is a free and open-source CSS library directed at responsive, mobile-first front-end
web development. It contains CSS and JavaScript-based design templates for typography, forms,
buttons, navigation, and other interface components.

In brief, Bootstrap is a CSS library that contains a lot of pre-built components that you can
use to build your website.

Bootstrap was developed by Mark Otto and Jacob Thornton at Twitter.

It’s better to watch Bootstrap inroduction video from session record on Google
drive.

2

Bootstrap

3.2 What is the difference between library and framework?
A library is a collection of pre-written code that you can use in your project.

A framework is larger than a library and it provides a structure for your project. It has a
collection of libraries and tools that you can use to build your project.

Example of libraries: Bootstrap, tailwind, etc.

Example of frameworks: Angular, React, etc.

3.3 How to use Bootstrap?
3.3.1 Downloading Bootstrap

You can use Bootstrap by downloading the CSS and JS files from the official website and linking
them in your HTML file.

Then from the downloaded files you get two files:

• bootstrap.min.css

• bootstrap.bundle.min.js

You will find these files in the dist folder. Then place them in your project folder.

Then in your HTML file, link the CSS file in the head section and the JS file at the end of the
body section.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Trying Bootstrap</title>
5 <link rel="stylesheet" href="./css/bootstrap.min.css">
6 </head>
7 <body>
8 .
9 .

10 .
11 your page content
12 .
13 .
14 .
15 <script src="./js/bootstrap.bundle.min.js"></script>
16 </body>
17 </html>

3.3.2 Using CDN

CDN stands for Content Delivery Network. You can use Bootstrap by linking the CSS and JS
files from a CDN.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Trying Bootstrap</title>
5 <link

3

https://getbootstrap.com/docs/5.3/getting-started/download/

Bootstrap

6 rel="stylesheet"
7 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist

/css/bootstrap.min.css"↪→

8 >
9 </head>

10 <body>
11 .
12 .
13 .
14 your page content
15 .
16 .
17 .
18 <script
19 src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist

/js/bootstrap.bundle.min.js"↪→

20 >
21 </script>
22 </body>
23 </html>

3.4 Some Questions
What are the extra .map files that come with Bootstrap?

All the .map files are because Bootstrap is written in Sass and the .map files are used to map
the compiled CSS to the original Sass files.

What is the difference between bootstrap.min.css and bootstrap.css?

bootstrap.min.css is the minified version of bootstrap.css. Minified files are smaller in size
and faster to load.

So how to minify a CSS file?

You can use a CSS minifier like CSS Minifier.

What are the rtl files in Bootstrap?

rtl stands for right-to-left. These files are used to support right-to-left languages like Arabic.

What are the utilities, reboot and grid files in Bootstrap?

• Utilities: These are a collection of CSS classes that provide quick and easy-to-use styling
options for various elements. Utilities in Bootstrap offer solutions for common tasks like
spacing, alignment, typography, and more. They allow developers to apply styles without
having to write custom CSS, which helps in maintaining consistency and speeding up
development.

• Reboot: The “reboot” file in Bootstrap is a CSS file that provides a standardized set
of CSS resets and basic styles. It aims to normalize styles across different browsers and
devices, ensuring consistent rendering of HTML elements. Reboot resets the default styling
of HTML elements like headings, paragraphs, lists, links, etc., making them consistent
and predictable.

4

https://www.toptal.com/developers/cssminifier

Bootstrap

• Grid: The grid system in Bootstrap is a powerful layout utility that allows developers
to create responsive and flexible layouts easily. It’s based on a 12-column grid system,
which provides a flexible structure for organizing content on a web page. Developers can
use predefined classes to create responsive layouts that adjust automatically based on the
screen size and device, ensuring a consistent user experience across different devices.

Why we use bootstrap.min.css and bootstrap.bundle.min.js?

bootstrap.min.css is the CSS file that contains all the styles of Bootstrap.

bootstrap.bundle.min.js is the JS file that contains all the JavaScript plugins of Bootstrap.

But you can still use other files that contain only the features you need.

What is the difference between bootstrap.bundle.min.js and bootstrap.min.js?

bootstrap.bundle.min.js includes Popper.js which is a library used to position tooltips and
popovers.

3.5 What to do if you want to change the default Bootstrap styles?
You can override the default Bootstrap styles by writing your own CSS code and loading it after
the Bootstrap CSS file.

1 <head>
2 <title>Trying Bootstrap</title>
3 <link
4 rel="stylesheet"
5 href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist

/css/bootstrap.min.css"↪→

6 >
7 <link rel="stylesheet" href="./css/styles.css">
8 </head>

Also don’t override the Bootstrap class styles directly, instead, create a new class with the
styling you want and apply it to the element.

You can apply the styling by overriding the variable values for the Bootstrap component you
want.

In CSS:

1 .my-custom-class {
2 /* Your custom styles here */
3 }

In HTML:

1 <div
2 class="bootstrap-class-1 bootstrap-class-2 my-custom-class"
3 >
4 </div>

3.6 Sizing in Bootstrap
Bootstrap provides classes to set the width and height of elements.

5

Bootstrap

• w-25, w-50, w-75, w-100, w-auto to set the width to 25%, 50%, 75%, and 100%, and auto
respectively.

• h-25, h-50, h-75, h-100, h-auto to set the height to 25%, 50%, 75%, and 100% and auto
respectively.

3.7 Colors in Bootstrap
Bootstrap provides classes to set the background color.

• bg-primary, bg-secondary, bg-success, bg-danger, bg-warning, bg-info, bg-light,
bg-dark, bg-white to set the background color.

And to change the text color you can use the following classes.

• text-primary, text-secondary, text-success, text-danger, text-warning,
text-info, text-light, text-dark, text-white to set the text color.

You can also change the background color opacity using the --bs-bg-opacity variable.

1 .bg-primary {
2 --bs-bg-opacity: 0.5;
3 }

We also have some classes to control the opacity of the background color.

• bg-opacity-25, bg-opacity-50, bg-opacity-75, bg-opacity-100 to set the opacity to
25%, 50%, 75%, and 100% respectively.

And to control the opacity of the element itself, you can use the following classes.

• opacity-0, opacity-25, opacity-50, opacity-75, opacity-100 to set the opacity to
0%, 25%, 50%, 75%, and 100% respectively.

3.8 Alignment
Bootstrap provides classes to align elements.

• text-start, text-center, text-end to align text.

3.9 Text in Bootstrap
3.9.1 Font Size

• fs-1, fs-2, fs-3, fs-4, fs-5, fs-6 to set the font size.

3.10 Font Style
• fst-italic to set the font style to italic.

3.10.1 Font Weight

• fw-light, fw-normal, fw-bold to set the font weight.

3.10.2 Text Transform

• text-lowercase, text-uppercase, text-capitalize to transform text.

6

Bootstrap

3.10.3 Line Height

• lh-base, lh-sm, lh-lg to set the line height to base, small, and large respectively.

There are many other effects and classes that you can use in Bootstrap. You can find them in
Bootstrap documentation.

7

https://getbootstrap.com/docs/5.3/getting-started/introduction/

Session 12

Mohamed Emary

April 18, 2024

1 Bootstrap Cont
Bootstrap contains:

• Components - Predefined components that can be used in the web page like buttons,
forms, etc.

• Utitlity classes - Classes that can be used to apply some styles to the elements.
• Grid system - A system that helps to create responsive web pages.

1.1 Screen Sizes
Bootstrap has the following screen sizes:

• Screen Sizes:
◦ Extra small < 576px
◦ Small sm ≥ 576px
◦ Medium md ≥ 768px
◦ Large lg ≥ 992px
◦ Extra large xl ≥ 1200px
◦ Extra extra large xxl ≥ 1400px

1.2 Containers
• container - Container class which has a max-width depending on the screen size, it also

has a right and left padding.
• container-fluid - Container class which has a width of 100% in all screen sizes, it still

has a right and left padding.
• container-{SCREEN-SIZE} - Container class which has a max-width depending on the

screen size, it also has a right and left padding. ex: container-sm, container-md,
container-lg, container-xl, container-xxl.

1

Flex Display

◦ container-lg - has a 100% width in extra small, small, and medium screens, and a
fixed width in large and above.

2 Flex Display
• d-flex - Display flex
• row - It has a flex display with flex-wrap set to wrap, it also has a negative margin to

counter the padding of the container and if you remove the container you will notice a
horizontal scroll bar.

If you want to test the negative margin try the following code:

1 <div class="negMargin">
2 </div>

1 .negMargin {
2 height: 100px;
3 background-color: teal;
4 margin: 0 -15px;
5 }

You will see a horizontal scroll bar no matter how wide your screen is. Try to remove the margin
or make it positive and it will disappear.

Now try putting it inside a container that has
a padding like the following:

1 <div class="container">
2 <div class="negMargin"></div>
3 </div>

And give the container a padding:

1 .container {
2 background-color: gold;
3 padding: 15px;
4 }

The horizontal scroll bar will disappear and you will see the padding of the container only from
upper and lower sides since the negative margin is only on the left and right sides.

It will look like this:

Figure 1: Negative Margin

And if you give the container a padding larger than the negative margin (for example 25px) it
will look like this:

Figure 2: Side Padding

2

Flex Display

row also allows us to specify the number of items in the row using the classes
col-{NUMBER-OF-ROWS} followed by the number of columns you want to divide the
row into. You can also specify them based on each screen size, for example, col-sm-6 will make
the item take half the width of the row in small screens.

Bootstrap grid system has 12 columns so you can divide the row into 12 columns.

By default if you specify the number of columns an element inside a container spans in a specific
screen size, the larger screen sizes will also have the same number of columns and smaller screen
sizes will have 12 columns.

For example if your element has the class col-lg-4 it will span 4 columns in large, extra large,
and extra extra large screens, and 12 columns in medium, small, and extra small screens.

The row must be the direct parent of the items that have the col- class.

row has a default right and left padding (gutter) for all its direct children. If you want to change
it you can use gx-{NUMBER} The number should be between 0 and 5.

With row gy- is used for vertical margin not padding.

So in summary:

• Gutter is used with row.
• gx-{NUMBER} is used for horizontal padding (it’s not margin because margin would have

caused the elements to go to next line and box-sizing: border-box will not be able to
fix it).

• gy-{NUMBER} is used for vertical margin.
• g-{NUMBER} allows you to change both gx- and gy- at the same time.

When using row you can make all the elements inside the row have the same width by using the
class col without specifying the number of columns. You can also specify at which screen size
you want the element to have the same width by adding the screen size to the class like col-lg
so this will make the element have the same width in large screens and above then you can use
col-sm-6 to make the element take half the width in small and medium screens, and the extra
small screen will have 12 columns.

2.1 Offset
offset is used to give the elements a margin-left that is equal to a number of columns you
specify. For example, offset-2 will give the element a margin-left equal to the width of 2
columns.

offset is used when you have extra columns space in the row.

You can also make that offset appear in a specific screen size by adding the screen size to the
class like offset-md-2 so this will make the offset appear only in medium screens or larger.

2.2 Min and Max Width
min-width is the minimum width that an element can have, the element can be larger than it
but not smaller.

max-width is the maximum width that an element can have, the element can be smaller than it
but not larger.

3

Summary

3 Summary
• Containers:

◦ container - has a max-width depending on the screen size.
◦ container-fluid - has a width of 100% in all screen sizes.
◦ container-{SCREEN-SIZE} - has a max-width in that screen size or larger and 100%

in smaller screen sizes.
• row & Flex Display:

◦ d-flex - Display flex.
◦ row - It has a flex display with flex-wrap set to wrap.
◦ row has a negative margin to counter the padding of the container.
◦ col-{NUMBER-OF-COLUMNS} - Specify the number of columns an element will span in

a row. -Gutter
◦ gx-{NUMBER} - Change the horizontal padding of items inside the row.
◦ gy-{NUMBER} - Change the vertical margin of items inside the row.
◦ g-{NUMBER} - Change both the horizontal padding and vertical margin of items inside

the row.
• col

◦ col - Make all the elements inside the row have the same width.
◦ col-{SCREEN-SIZE} - Make all the elements inside the row have the same width in

that screen size or larger.
• offset

◦ offset-{NUMBER-OF-COLUMNS} - Give the element a margin-left equal to the number
of columns you specify.

◦ offset-{SCREEN-SIZE}-{NUMBER-OF-COLUMNS} - Give the element a margin-left
equal to the number of columns you specify in that screen size or larger.

4

Session 13

Mohamed Emary

April 21, 2024

1 Inside head tag
meta tag takes: name & content

keywords

1 <meta name="keywords" content="HTML, CSS, JavaScript">

author

1 <meta name="author" content="John Doe">

description

1 <meta name="description" content="Free Web tutorials">

viewport (responsive design)

1 <meta name="viewport" content="width=device-width, initial-scale=1.0">

Content-Type

1 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

important for SEO

Link icon

1 <link rel="icon" href="favicon.ico">

.ico is preferred. There is sites to convert .png to .ico.

Character encoding

1 <meta charset="UTF-8">

OR:

1 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

1

Other

html lang

1 <html lang="en">

Before <html>

<!DOCTYPE> declaration

1 <!DOCTYPE html>

Means the document is an HTML5 document.

It enforces some rules on the document CSS like:

• case-sensitive selectors
• having to write px after a number
• images inside a div with a border there will be a very small gap between the image and

the border since the image is a replaced element and to fix this you can set the image to
display: block;

2 Other
svg tag

It can be used to create shapes and images.

1 <svg width="100" height="100">
2 <circle cx="50" cy="50" r="40" stroke="black" stroke-width="3" fill="red"

/>↪→

3 </svg>

circle is the shape, cx and cy are the center of the circle, r is the radius, stroke is the color
of the border, stroke-width is the width of the border, fill is the color of the inside of the
circle.

• form-control and gy-2 classes
• btn-outline-warning

svg and another section with the same color to make it look like better

2

Other

Figure 1: 1713722502526

In this image the waves above appear to be a part of the form however they are not, but since
they have the same color they look like they are.

max-width and min-width

Download fonts from google fonts and create a folder for them in the project. Then move the
downloaded font file (.ttf, .woff, .woff2, .eot) to the fonts folder.

Then use the @font-face rule to use them. font-family is the name of the font. src is the
path to the font.

1 @font-face {
2 font-family: 'Roboto';
3 src: url('fonts/Roboto-Regular.ttf');
4 }

You can have multiple src to support different browsers.

1 @font-face {
2 font-family: 'Roboto';
3 src: url('fonts/Roboto-Regular.ttf') format('truetype'),
4 url('fonts/Roboto-Regular.woff') format('woff');
5 }

Then use the font-family in the CSS.

You can have more than one font with the same name and the browser will use the one that is
needed.

for example:

fonts with the same name and different weights.

1 @font-face {
2 font-family: 'Roboto';
3 src: url('fonts/Roboto-Regular.ttf');
4 }

3

Other

5

6 @font-face {
7 font-family: 'Roboto';
8 src: url('fonts/Roboto-Bold.ttf');
9 }

So using:

1 font-family: 'Roboto';
2 font-weight: bold;

will use the bold font.

while using:

1 font-family: 'Roboto';
2 font-weight: normal;

will use the regular font.

Importing font awesome javascript file will make the icons appear as svg. You can see that in
dev tools.

navbar-expand-lg is used to make the navbar responsive and expand when the screen is large.

In html 5 you can make a tag with any name and it will be valid and it will have inline display
by default.

You can also create your own attributes in the form data-*. Then you can select it in the CSS
using [data-*].

Bootstrap has its own tags like data-toggle and data-target to make the navbar work.

Slider exercise

cards exercise

tabs part of the exercise

• Alert
• Accordion
• Badge
• Breadcrumb

And many Other Components

popper.min.js and bootstrap.min.js are merged in bootstrap.bundle.min.js

4

Session 14

Mohamed Emary

April 24, 2024

1 Lighthouse
Lighthouse is a tab in chrome dev tools that helps you to test the performance, accessibility,
and SEO of your website, then it gives you a score based on these tests.

2 Video & Audio Tags

2.1 Video
1 <video src="video.mp4" controls></video>

Any video is a replaced element just like an image, so you can set its width and height.

Video tag has some attributes:

• controls attribute: adds a play/pause button, volume control, and a progress bar.
• autoplay attribute: plays the video automatically, but some browsers block it.
• muted attribute: mutes the video.
• loop attribute: plays the video in a loop.

2.2 Audio
1 <audio src="audio.mp3" controls></audio>

Audio tag has the same attributes as the video tag.

3 JavaScript
JS story in video and where did its name come from.

1

where to write JS code

4 where to write JS code
• Inline

• Internal

• External

• window.alert

• console.log

• document.getElementById

• document.getElementById("demo").innerHTML = "Hello JavaScript";

• console.log(document.getElementById("demo"));

• console.log(document.getElementById("demo").innerHTML); prints the tag

• Comments one line and multi-line

• variable declaration assignment:

◦ in the same line or in different lines
◦ since its a variable u can reassign it
◦ the name can’t start with a number or a special character except for $ and _

◦ variable name can’t be a reserved word like var, while, function, etc

• Use camelCase for naming

• don’t redeclare a variable with the same name

• Data types:

◦ Primitive
1. Number
2. String
3. Boolean
4. Null
5. Undefined

◦ Non-primitive

• To know the data type of a variable use typeof

• JS is a loosely typed language which means you don’t have to put the data type of a
variable when declaring it.

◦ Languages that force you to declare the data type of a variable are called statically
typed languages.

• strings are written inside "string" or 'string' or `String` (backticks)

• typeof null is object which is a bug in JS

2

Session 15

Mohamed Emary

April 28, 2024

1 Operators In JavaScript

1.1 Arithmetic Operators
Arithmetic operators in JS are: +, -, *, /, **, and %.

The % operator returns the remainder of a division, for example if x = 5 and y = 2, then x %
y is 1. When the remainder is 0, it means that y is divisible by x.

When + is used with strings, it concatenates them, for example:

1 var x = "Hello" + "World"; // x is "HelloWorld"
2 var y = "Hello" + 1 + 2; // y is "Hello12"
3 var z = 1 + 2 + "Hello"; // z is "3Hello"

1.2 Assignment Operators
Assignment operators in JS are: =, +=, -=, *=, /=, **=, and %=.

1.3 Comparison Operators
Comparison operators in JS are: ==, ===, !=, !==, >, <, >=, and <=.

1 var x = 5;
2 var y = 5;
3 console.log(x >= y); // true
4

5 x = "5";
6 console.log(x == y); // true
7 console.log(x != y); // false
8

9 console.log(x === y); // false
10 console.log(x !== y); // true

So what is the difference between == and ===?

1

Conditional Statements

• == is used to compare values, while === is used to compare values and types.
• console.log(x == y); is true because JS converts the string to a number if possible.
• console.log(x === y); is false because === does not convert the types.

1.4 Logical Operators
Logical operators in JS are: &&, ||, and ! (AND, OR, and NOT).

Explanation:

• && is true if all conditions are true and false if at least one condition is false.
• || is true if at least one condition is true and false if all conditions are false.
• ! is used to reverse the result, so if a condition evaluates to true, ! will make it false.

1 var x = 5;
2 var y = 10;
3 console.log(x > 3 && y < 20); // true
4 console.log(x > 3 || y > 20); // true
5 console.log(!(x > 3)); // false

Logical operators are commonly used in to make decisions in JS using conditional statements.

2 Conditional Statements

2.1 If Statement
The if statement is used to execute a block of code if a condition is true.

1 var x = 5;
2 if (x > 0) {
3 console.log("x is positive");
4 }

The statement console.log("x is positive"); will only be executed if x > 0.

2.2 Else Statement
The else statement is used to execute a block of code if the same condition is false.

1 var x = -5;
2 if (x > 0) {
3 console.log("x is positive");
4 } else {
5 console.log("x is negative");
6 }

2.3 Else If Statement
The else if statement is used to specify new conditions if the previous conditions are false.

1 var skill = "HTML";
2 if (skill == "CSS") {

2

Conditional Statements

3 console.log("CSS");
4 } else if (skill == "HTML") {
5 console.log("HTML");
6 } else if (skill == "JavaScript") {
7 console.log("JavaScript");
8 } else {
9 console.log("Another skill");

10 }

Here if skill is not CSS it checks if it is HTML, and if not, it checks if it is JavaScript and if
not, it prints Another skill.

2.4 Nesting If Statement
A nested if statement is an if statement inside another if statement.

1 var x = 10;
2 var y = 20;
3 if (x == 10) {
4 if (y == 20) {
5 console.log("x is 10 and y is 20");
6 }
7 }

2.5 Switch Statement
The switch statement is used to perform different actions based on different conditions.

1 var day = 3;
2 switch (day) {
3 case 1:
4 console.log("Monday");
5 break;
6 case 2:
7 console.log("Tuesday");
8 break;
9 case 3:

10 console.log("Wednesday");
11 break;
12 default:
13 console.log("Another day");
14 }

The break statement is used to break out of the switch block, because JS will execute the next
switch case if a break is not found.

Switch statement has a better performance than if-else statement.

2.6 Nested Switch Statement
A nested switch statement is a switch statement inside another switch statement.

1 var day = 3;
2 var month = 4;

3

Loops

3 switch (day) {
4 case 1:
5 console.log("Monday");
6 break;
7 case 2:
8 console.log("Tuesday");
9 break;

10 case 3:
11 switch (month) {
12 case 4:
13 console.log("Wednesday, April");
14 break;
15 case 5:
16 console.log("Wednesday, May");
17 break;
18 default:
19 console.log("Another Month");
20 }
21 break;
22 default:
23 console.log("Another day");
24 }

2.7 Falsey Values
Falsey values in JS are values that are considered false when evaluated in a boolean expression.
They include: false, 0, "", null, undefined, and NaN.

1 var x = "";
2 var y = "Mohamed";
3 console.log(x && y); // prints nothing
4 console.log(x || y); // Mohamed

The first console.log prints nothing because x is falsey and we are using the && operator so
both conditions must be true to execute the statement, while the second console.log prints
Mohamed because y is truthy and we are using the || operator so only one condition must be
true to execute the statement.

The && stops evaluating with the first false value, while the || stops evaluating with the first
true value.

3 Loops
Loops are used to execute the same block of code multiple times.

3.1 For Loop
The for loop is used to execute a block of code a number of times.

Syntax:

4

Loops

1 for (initialization; condition; step) {
2 // code block to be executed
3 }

Example:

1 for (var i = 0; i < 5; i++) {
2 console.log(i);
3 }

The loop will print the numbers from 0 to 4.

i++ is the same as i = i + 1, i += 1.

To print even numbers from 0 to 10:

1 for (var i = 0; i <= 10; i += 2) {
2 console.log(i);
3 }

These two code blocks will print forever (infinitive loop):

1 for (;;) {
2 console.log("Hello");
3 }

1 for (var i = 0; i < 5;) {
2 console.log(i);
3 }

While this one will cause an error because of a missing ;:

1 for (;) {
2 console.log("Hello");
3 }

3.2 While Loop
The while loop is used to execute a block of code as long as a condition is true.

Syntax:

1 while (condition) {
2 // code block to be executed
3 }

Example:

1 var i = 0;
2 while (i < 5) {
3 console.log(i);
4 i++;
5 }

The loop will print the numbers from 0 to 4.

3.3 Do While Loop
The do while loop is a variant of the while loop. This loop will execute the code block once,
before checking if the condition is true, then it will repeat the loop as long as the condition is
true.

5

Loops

Syntax:

1 do {
2 // code block to be executed
3 } while (condition);

Example:

1 var i = 0;
2 do {
3 console.log(i);
4 i++;
5 } while (i < 5);

3.4 Using Loops With HTML Elements
You can use loops to manipulate HTML elements.

In HTML:

1 <ul id="list">
2

In JS:

1 var list = document.getElementById("list");
2 for (var i = 0; i < 6; i++) {
3 if (i % 2 === 0) {
4 var item = "<li class='red'>Item " + i + "";
5 } else {
6 var item = "<li class='green'>Item " + i + "";
7 }
8 list.innerHTML += item;
9 }

You can even use the classes to style the elements.

1 .red {
2 color: red;
3 }
4

5 .green {
6 color: green;
7 }

Figure 1: Final Result

6

Summary

4 Summary
• Operators in JS include arithmetic, assignment, comparison, and logical operators.
• Arithmetic operators include +, -, *, /, **, and %.

◦ + is used to concatenate strings.
◦ % returns the remainder of a division.

• Assignment operators include =, +=, -=, *=, /=, **=, and %=.
• Comparison operators include ==, ===, !=, !==, >, <, >=, and <=.

◦ == is used to compare values, while === is used to compare values and types.
• Logical operators include &&, ||, and !.
• Conditional statements include if, else, else if, and switch.

◦ if is used to execute a block of code if a condition is true.
◦ else is used to execute a block of code if the same condition is false.
◦ else if is used to specify new conditions if the previous conditions are false.
◦ switch is used to perform different actions based on different conditions.

∗ break is used with switch to break out of a case, otherwise JS will execute the
next cases till the end.

∗ default is used with switch to execute a block of code if no case is true.
• Falsey values are values that are considered false in a boolean expression, they include

false, 0, "", null, undefined, and NaN.
• Loops include for, while, and do while.

◦ for is used to execute a block of code a number of times.
◦ while is used to execute a block of code as long as a condition is true.
◦ do while is used to execute a block of code once before checking the condition.

7

Session 16

Mohamed Emary

May 5, 2024

Important Note

This session discusses a lot of important and tricky concepts that gets asked frequently in
interviews. So, make sure you understand the concepts well.

1 Implicit Conversion
Implicit conversion is the automatic conversion of a value from one data type to another. This is
done by the JavaScript engine when the data type of the operands in an expression are different.

For example when you add a number and a string, JavaScript will convert the number to a
string and concatenate the two strings.

1 var a = 20;
2 var b = "10";
3 var c = a + b;
4 console.log("c = " + c);
5 var f = a - b;
6 console.log("f = " + f);
7 var d = a * b;
8 console.log("d = " + d);
9 var e = a / b;

10 console.log("e = " + e);

c = 2010
f = 10
d = 200
e = 2

As you see the results below the code:

• c equals 2010 because a is converted to
a string and concatenated with b.

• f equals 10 because b is converted to a
number and subtracted from a.

• d equals 200 because b is converted to a
number and multiplied by a.

• e equals 2 because b is converted to a
number and divided by a.

But what if the value can’t be converted to the desired data type? In this case, the
result will be NaN (Not a Number).

1

Implicit Conversion

1 var a = 20;
2 var b = "Hello";
3 var c = a - b;
4 console.log("c = " + c);

c = NaN

The result will be NaN because the string Hello
can’t be converted to a number to be subtracted
from a.

Lets see the result of string to number conversion of some strings.

1 console.log('true = ' + Number(true))
2 console.log('false = ' + Number(false))
3 console.log('"0" = ' + Number('0'))
4 console.log('null = ' + Number(null))
5 console.log('undefined = ' + Number(undefined))
6 console.log('"" = ' + Number(''))
7 console.log('NaN = ' + Number(NaN))

true = 1
false = 0
"0" = 0
null = 0
undefined = NaN
"" = 0
NaN = NaN

• true will be converted to 1 and false will be converted to 0.
• Since the string 0 can be converted to a number, the result will be 0.
• null, "" will be converted to 0.
• undefined will be converted to NaN.
• NaN stays as NaN.

What about adding these values to a number?

1 console.log('true + 1 = ' + (true + 1))
2 console.log('false + 1 = ' + (false + 1))
3 console.log('null + 1 = ' + (null + 1))
4 console.log('undefined + 1 = ' + (undefined + 1))
5 console.log('NaN + 1 = ' + (NaN + 1))

true + 1 = 2
false + 1 = 1
null + 1 = 1
undefined + 1 = NaN
NaN + 1 = NaN

What about adding these values to a string?

1 console.log('true + "1" = ' + (true + "1"))
2 console.log('false + "1" = ' + (false + "1"))
3 console.log('null + "1" = ' + (null + "1"))
4 console.log('undefined + "1" = ' + (undefined + "1"))
5 console.log('NaN + "1" = ' + (NaN + 1))

2

Function

true + "1" = true1
false + "1" = false1
null + "1" = null1
undefined + "1" = undefined1
NaN + "1" = NaN

Lets try some extra examples.

1 console.log('true + true = ' + (true + true))
2 console.log('true + false = ' + (true + false))
3 console.log('false + false = ' + (false + false))
4 console.log('true + null = ' + (true + null))
5 console.log('true + undefined = ' + (true + undefined))
6 console.log('true + NaN = ' + (true + NaN))

true + true = 2
true + false = 1
false + false = 0
true + null = 1
true + undefined = NaN
true + NaN = NaN

Some extra examples:

1 console.log('"3" * false = ' + ("3" * false))
2 console.log('"3" * true = ' + ("3" * true))
3 console.log('"3" / false = ' + ("3" / false))
4 console.log('"3" / true = ' + ("3" / true))

"3" * false = 0
"3" * true = 3
"3" / false = Infinity
"3" / true = 3

2 Function
Functions are reusable blocks of code that can be called multiple times. They can take parameters
and return values.

Functions are defined using the function keyword followed by the function name and a list of
parameters in parentheses. The function body is enclosed in curly braces {}.

Functions parameters are created without using var keyword.

1 function FunctionName (parameter1, parameter2, ...) {
2 // function body
3 }

And to use the function you have to call it, just write the function name followed by parentheses
and any arguments you want to pass to the function.

The arguments are the values of the parameters that the function will use.

Example:

3

Function

1 function greet(name) {
2 console.log("Hello " + name);
3 }
4 greet("World");

Hello World

The greet("World") is called a function call or invocation. The value inside the parentheses is
called an argument.

For reusability purposes, it’s preferred that each function does only one thing, this is called the
single responsibility principle.

Functions can access already defined variables in the global scope.

1 var name = "World";
2 function greet() {
3 console.log("Hello " + name);
4 }
5 greet();

Hello World

2.1 Return Value
Functions can return a value using the return keyword followed by the value to return.

1 function add(a, b) {
2 return a + b;
3 }
4 var result = add(10, 20);
5 console.log("result = " + result);

result = 30

Any code after the return statement will not be executed.

The function that doesn’t have a return statement will return undefined.

1 function greet(name) {
2 console.log("Hello " + name);
3 }
4 var result = greet("World");
5 console.log("result = " + result);

Hello World
result = undefined

The first output line here Hello World is because of the console.log inside the function, and
the second output line result = undefined is because the function doesn’t have a return
statement.

A return function is the function that have a return statement.

Return is used when you want to get a value from a function to use it in another part of the
code.

You can even return another function.

4

Some Interview Notes

2.2 Function Types
2.2.1 Declaration Function

This is the most common way to define a function. It is defined using the function keyword
followed by the function name.

Declaration functions always start with the function keyword.

1 function greet(name) {
2 console.log("Hello " + name);
3 }
4 greet("World");

Hello World

2.2.2 Expression Function

This is when you assign a function to a variable.

1 var greet = function(name) {
2 console.log("Hello " + name);
3 }
4 greet("World");

Hello World

In this example, the function is assigned to the greet variable and then called using the variable.

When you print the value of the greet variable you will get the function definition.

1 console.log(greet);

Figure 1: Console Output

3 User Input
To get a value from user you can use the prompt function. This function will show a dialog box
to the user with a message and an input field, and it will return the value entered by the user.

1 var name = prompt("Enter your name");
2 console.log("Hello " + name);

This code will make a dialog box appear with the message “Enter your name” and an input
field. The value entered by the user will be stored in the name variable then it will be printed to
the console.

4 Some Interview Notes
What will be the result of this code?

5

Hoisting With Function Types

1 function salaryBonus(salary) {
2 console.log(salary + 100);
3 }
4 salaryBonus();
5 salaryBonus(100);
6 salaryBonus(100, 200);

The results will be:

1. NaN because salary is not defined so
undefined + 100 is NaN.

2. 200 because salary is 100.
3. 200 because salary is 100 and 200 is

ignored.

5 Hoisting
JavaScript hoisting is a mechanism where variable and function declarations are moved to the
top of their containing scope during the compilation phase.

That is the reason why when you print the value of a variable before declaring it, you will get
undefined instead of an error.

1 console.log(a);
2 var a = 10;

undefined

But if you just print the value of a variable without declaring it, you will get an error.

1 console.log(a);

With the code above you will get: ReferenceError: a is not defined

Since hoisting also works with functions, you can call a function before declaring it.

1 greet("World");
2 function greet(name) {
3 console.log("Hello " + name);
4 }

Hello World

These weird behaviors happen because of hoisting.

You should notice that only the declaration is hoisted not the initialization, so if you have var
a = 10; the var a; part will be hoisted but the a = 10; part will not and that is why you get
undefined when you print the value of a.

So these are equivalent and both will print undefined.

1 console.log(a);
2 var a = 10;

undefined

1 var a;
2 console.log(a);
3 a = 10;

undefined

6 Hoisting With Function Types

6.1 Declaration Functions Hoisting
Declaration functions get hoisted so you can call the function before declaring it.

6

Scope

6.2 Expression Functions Hoisting
Expression functions don’t get hoisted since only the variable declaration gets hoisted and not
the initialization (which is the function definition)

For example in:

1 var greet = function(name) {
2 console.log("Hello " + name);
3 }

only var greet; gets hoisted.

so you can’t call an expression function before the line it was assigned to the variable. In other
words to make a function that can only be called after its definition use expression function.

7 Scope
Scope is the context in which a variable is defined. JavaScript has two types of scope: global
scope and local scope.

7.1 Global Scope
A variable is in the global scope if it’s declared outside of any function or block.

1 var a = 10;
2 function getNum() {
3 console.log(a);
4 }
5 getNum();

In this example, the variable a is declared in the global scope and can be accessed from the
getNum function.

7.2 Local Scope
A variable is in the local scope if it’s declared inside a function or block.

1 function getNum() {
2 var a = 10;
3 }
4 console.log(a);

In this example, the variable a is declared in the local scope of the getNum function and can’t
be accessed from outside the function, so you will get ReferenceError: a is not defined.

Inside a function you can access the variables of the global scope but in the global you can’t
access the variables of the function local scope.

The normal behavior assumes that each { } creates a new scope but this is not the case when
using var keyword, so if you create a loop or an if condition for example and declared variables
inside their { } using var keyword, you still can access these variables from outside the { },
and the only exception is the function scope. The same happens with whole functions if you
declared a function inside another function you can only access it from inside the function.

7

Scope

7.3 Qestions
What will be the output of each of these codes?

Code 1

1 var a = 10;
2 function myFunction() {
3 var a = 20;
4 console.log(a);
5 }
6 myFunction();
7 console.log(a);

20
10

The output of the function call will be 20 and the output of the second console.log will be 10
because the function accessed the variable in the local scope which had the value 20 while the
console.log accessed the variable in the global scope which had the value 10.

Code 2

1 var a = 10;
2 function myFunction() {
3 console.log(a);
4 a = 20;
5 }
6 myFunction();
7 console.log(a);

10
20

The output of the function call will be 10 and the output of the second console.log will be
20 because the function accessed the variable in the global scope which had the value 10 and
changed it to 20 then the console.log accessed the same variable after it was changed.

Code 3

1 var a = 10;
2 function myFunction() {
3 console.log(a);
4 var a = 20;
5 }
6 myFunction()
7 console.log(a);

undefined
10

The output of the function call will be undefined and the output of the second console.log
will be 10 because the function accessed the variable in the local scope which was hoisted to the
top of the function but not initialized yet so it was undefined while the console.log accessed
the variable in the global scope which had the value 10.

8

Scope

Notice that the variable inside the function gets hoisted to the top of the function not to the
top of the global scope.

Code 4

1 function foo() {
2 function bar(){ return 3;}
3 function bar(){ return 8;}
4 return bar();
5 }
6 console.log(foo())

8

The output will be 8 because the second function definition will override the first one.

Code 5

1 function foo() {
2 var bar = function(){ return 3;}
3 return bar();
4 var bar = function(){ return 8;}
5 }
6 console.log(foo())

3

The output will be 3 because the second function definition will be ignored because it’s an
expression function that is not hoisted so only the variable declaration will be hoisted and the
value of the variable will be the first function.

Code 6

1 function foo() {
2 function bar(){ return 3;}
3 return bar();
4 function bar(){ return 8;}
5 }
6 console.log(foo())

8

The output will be 8 because both functions are declaration functions so both will be hoisted
(in the same order they were defined) and the second function will override the first one.

Its equivalent to this code:

1 function foo() {
2 function bar(){ return 3;}
3 function bar(){ return 8;}
4 return bar();
5 }
6 console.log(foo())

Code 7

1 function foo(){
2 return bar();

9

Self Inovked Function

3 function bar(){ return 3;}
4 var bar = function(){ return 8;}
5 }
6 console.log(foo())

3

The output will be 3 because the declaration function definition will be hoisted to the top before
the return statement while in the expression function definition only the variable declaration
will be hoisted but not the function assigned to it, you should also know that the value returned
here is the result of the function call since we are using () after the function name but if we
remove the () the value returned will be the function definition similar to 1.

The code above is equivalent to this code which will also print 3:

1 function foo(){
2 function bar(){ return 3;}
3 var bar;
4 return bar();
5 bar = function(){ return 8;}
6 }
7 console.log(foo())

Code 8

1 console.log(foo())
2 var foo = function(){
3 return bar();
4 function bar(){ return 3; }
5 var bar = function(){ return 8; }
6 }

The output will be TypeError: foo is not a function because the variable foo is hoisted
to the top but not initialized yet so it’s value is undefined and you can’t call undefined as a
function. (if you console.log(foo) you will get undefined)

8 Self Inovked Function
It’s also called IIFE (Immediately Invoked Function Expression). It’s a function that is called
immediately after it’s defined.

Syntax:

1 (function() {
2 // function body
3 })();

We use IIFEs to create a new scope for our code so we can use variables without polluting the
global scope.

10

Session 17

Mohamed Emary

May 24, 2024

1 Object
Object in JS is a collection of key-value pairs. Keys are also called properties and values can be
any data type.

Objects are used to store multiple values in a single variable, these values are related to each
other.

1 var student = {
2 name: "Mohamed",
3 age: 25,
4 id: 12345,
5 courses: ["Math", "Physics", "Chemistry"],
6 };

Objects are non-primitive data types, and when you try console.log(typeof student) it will
return object.

Being a non-primitive data type means that the object can store multiple values, and these
values can be of different data types.

Printing the object will show all the properties and their values.

1 console.log(student);
2 // Output:
3 // {
4 // name: 'Mohamed',
5 // age: 25,
6 // id: 12345,
7 // courses: ['Math', 'Physics', 'Chemistry']
8 // }

To access the properties of an object, you can use the . operator.

Note:
When you see the dot operator with any variable, it means that the variable is an object.

1

Object

1 console.log(student.name); // Mohamed
2 console.log(student.age); // 25

When you try to access a property that doesn’t exist, it will return undefined.

1 console.log(student.city); // undefined
2 student.city = "Cairo"; // Set a new property
3 console.log(student.city); // Get the new property

Now when you try to print the object, you will see the new property.

1 console.log(student);
2 // Output:
3 // {
4 // name: 'Mohamed',
5 // age: 25,
6 // id: 12345,
7 // courses: ['Math', 'Physics', 'Chemistry'],
8 // city: 'Cairo'
9 // }

You can put an object inside another object.

1 var student = {
2 name: "Mohamed",
3 age: 25,
4 id: 12345,
5 courses: ["Math", "Physics", "Chemistry"],
6 address: {
7 city: "Cairo",
8 street: "Tahrir",
9 },

10 };

To access the nested object, you can use the dot operator.

1 console.log(student.address.city); // Cairo
2 console.log(student.address.street); // Tahrir

You can also put functions inside an object.

1 var student = {
2 name: "Mohamed",
3 age: 25,
4 id: 12345,
5 courses: ["Math", "Physics", "Chemistry"],
6 address: {
7 city: "Cairo",
8 street: "Tahrir",
9 },

10 sayHello: function() {
11 console.log("Hello, I'm a student");
12 },
13 };

To call the function, you can use the dot operator.

2

JS Built-in Objects

If you don’t use the parentheses (), it will return the function itself.

1 student.sayHello;
2 // Output:
3 // ƒ () {
4 // console.log("Hello, I'm a student");
5 // }

To call the function, you should use the parentheses ().

1 student.sayHello(); // Hello, I'm a student

Using the sayHello function inside a console.log will print but also return undefined because
the function doesn’t return anything.

1 console.log(student.sayHello());
2 // Output:
3 // Hello, I'm a student
4 // undefined

But if you use a function like this:

1 var student = {
2 name: "Mohamed",
3 age: 25,
4 id: 12345,
5 courses: ["Math", "Physics", "Chemistry"],
6 address: {
7 city: "Cairo",
8 street: "Tahrir",
9 },

10 sayHello: function() {
11 return `Hello, I'm ${student.name}`;
12 },
13 };

It will return the string without undefined.

1 console.log(student.sayHello());
2 // Output:
3 // Hello, I'm Mohamed

Note:
When you put a function inside an object, it’s called a method.

2 JS Built-in Objects
JavaScript has many built-in objects like window, document, console.

2.1 window

window is a super global object that contains all global variables, functions, and objects.

Example functions in the window object are alert, prompt.

3

JS Built-in Objects

1 window.alert("Hello, World!");
2 window.prompt("What's your name?");

Since window is the super global object, you can access its properties and methods without
using the window keyword.

This will also work:

1 alert("Hello, World!");
2 prompt("What's your name?");

2.2 document

document is another object that we can use to manipulate the HTML document.

1 document.getElementById("id");

Note:
Try this code:
document.getElementById("id").innerHTML = "Hello, World!";

Why this code works? isn’t getElementById a method not an object?
That is because the method getElementById returns an object so using the dot operator
. allows you to access the properties of the object that the method returns.

2.3 console

console is also an object that has a method log that we use to print messages.

1 console.log("Hello, World!");

2.4 Math

math is an object that has many properties and methods to perform mathematical operations.

1 console.log(Math.PI); // 3.141592653589793
2 console.log(Math.round(4.7)); // 5
3 console.log(Math.floor(4.7)); // 4
4 console.log(Math.ceil(4.4)); // 5
5 console.log(Math.pow(2, 3)); // 8
6 console.log(Math.sqrt(64)); // 8
7 console.log(Math.abs(-4.7)); // 4.7
8 console.log(Math.min(0, 150, 30, 20, -8, -200)); // -200
9 console.log(Math.max(0, 150, 30, 20, -8, -200)); // 150

10 console.log(Math.random()); // Random number between 0 and 1

Mathematical expressions of the above methods:

• Math.PI = π

• Math.round(4.7) ≈ 5
• Math.floor(4.7) = ⌊4.7⌋ = 4
• Math.ceil(4.4) = ⌈4.4⌉ = 5

4

Array

• Math.pow(2, 3) = 23 = 8
• Math.sqrt(64) =

√
64 = 8

• Math.abs(-4.7) = | − 4.7| = 4.7

1 console.log(Math.round(Math.random() * 10)); // Random number between 0 and
10↪→

Example to show a random number with a button click:

In HTML body:

1 <div>
2 <p id="rand"></p>
3 <button id="btn">Get a random Number</button>
4 </div>
5 <script src="./script.js"></script>

In script.js:

1 var btn = document.getElementById("btn");
2 btn.onclick = getRand;
3 function getRand() {
4 var p = document.getElementById("rand");
5 p.innerHTML = Math.round(Math.random() * 10);
6 }

3 Array
Array is a collection of elements. Elements can be of any data type.

Array is a special type of object:

1 var nums = [1, 2, 3, 4, 5];
2 console.log(typeof nums); // object

And since objects are non-primitive data types, arrays can store multiple values of different
data types.

Array syntax is a pair of square brackets [] with elements separated by commas.

1 var fruits = ["Apple", "Banana", "Orange"];
2 var mix = [
3 [1, 2, 3],
4 'Apple',
5 25,
6 true,
7 function() { return "Hello, World!"; },
8 { name: 'Mohamed', age: 25 }
9];

10

11 console.log(mix[0][1]); // 2
12 console.log(mix[1]); // Apple
13 console.log(mix[4]); // [Function]

5

Functional Programming in JS

14 console.log(mix[4]()); // Hello, World!
15 console.log(mix[5].name); // Mohamed

Suppose you have multiple products and each of these products is an object, and you want to
store all these products in one variable, you can use an array.

1 var products = [
2 { name: "Apple", price: 10 },
3 { name: "Banana", price: 5 },
4 { name: "Orange", price: 7 },
5];

Each item in the array has an index starting from 0 (not 1) and you can access the elements
using that index.

1 var fruits = ["Apple", "Banana", "Orange"];
2 console.log(fruits[0]); // Apple
3 console.log(fruits[2]); // Orange
4 console.log(fruits); // ["Apple", "Banana", "Orange"]

fruits[0] is read as “fruits of 0”.

To print each item in the array, you can use a loop.

1 var fruits = ["Apple", "Banana", "Orange"];
2 for (var i = 0; i < fruits.length; i++) {
3 console.log(fruits[i]);
4 }

fruits.length returns the number of elements in the array, and since the last index is
fruits.length - 1, the loop should run from 0 to fruits.length - 1 so we use i <
fruits.length instead of i <= fruits.length in the loop condition.

4 Object vs Array

Object Array

Type Object & Non-primitive Object & Non-primitive
Syntax { prop1: val1, prop2: val2, ... } [elem1, elem2, ...]
Element Access object.prop array[index]
Use Case Store different properties of an element Store multiple elements
Index Key Number
Example { name: 'Mohamed', age: 25 } ['Apple', 'Banana']

See the execrise at the end of video 7: object vs array & exercise

5 Functional Programming in JS
JavaScript applies functional programming concepts like:

1. You can assign a function to a variable.

6

Functional Programming in JS

1 var x = function() {
2 return "Hello, World!";
3 };

2. Functions can be properties of objects.

1 var obj = {
2 sayHello: function() { // method
3 return "Hello there";
4 },
5 };

3. Functions can be returned from another function.

1 function twoNumAvg(sum) {
2 return sum / 2;
3 }
4

5 function getAvg(a, b) {
6 var sum = a + b;
7 return twoNumAvg(sum);
8 }
9

10 console.log(getAvg(10, 20)); // 15

4. Functions can be passed as arguments to other functions.

1 function twoNumAvg(sum) {
2 return sum / 2;
3 }
4

5 function sum(a, b) {
6 return a + b;
7 }
8

9 console.log(twoNumAvg(sum(10, 20))); // 15

7

Summary

6 Summary
Objects:

• Object is a collection of key-value pairs.
• Objects are used to store multiple values in a single variable.
• Objects are non-primitive data types.
• Objects can store multiple values of different data types.

Arrays:

• Array is a collection of elements.
• Array is a special type of object.
• Arrays can store multiple values of different data types.

Built-in Objects:

• window is a super global object.
• document is an object that we can use to manipulate the HTML document.
• console is an object that has a method log to print messages.
• Math is an object that has many properties and methods to perform mathematical

operations.

Functional Programming:

• JavaScript applies functional programming concepts.
◦ Functions can be assigned to a variable.
◦ Functions can be properties of objects.
◦ Functions can be returned from another function.
◦ Functions can be passed as arguments to other functions.

8

Session 18

Mohamed Emary

May 27, 2024

1 Built-in Array Methods

1.1 push

Suppose you have this array:

1 var colors = ["red", "orange", "yellow"];

And you want to add another color to the end of the array. You can use this way:

1 colors[3] = "green";
2 console.log(colors); // ["red", "orange", "yellow", "green"]

However, there is a better way to do this. You can use the push method:

1 var colors = ["red", "orange", "yellow"];
2 colors.push("green");
3 console.log(colors); // ["red", "orange", "yellow", "green"]

The push method is an array method that adds an element to the end of an array, and returns
the new length of the array.

You can also use push to add multiple elements to an array:

1 var colors = ["red", "orange"];
2 var newLen = colors.push("blue", "indigo", "violet");
3 console.log(colors); // ["red", "orange", "blue", "indigo", "violet"]
4 console.log(newLen); // 5

1.2 unshift

unshift is similar to push, but it adds an element to the beginning of an array instead of the
end, and returns the new length of the array.

1 var colors = ["red", "orange", "yellow"];
2 var newLen = colors.unshift("green");
3 console.log(colors); // ["green", "red", "orange", "yellow"]
4 console.log(newLen); // 4

1

Built-in Array Methods

You can also use unshift to add multiple elements to an array:

1 var colors = ["red", "orange"];
2 colors.unshift("blue", "indigo", "violet");
3 console.log(colors); // ["blue", "indigo", "violet", "red", "orange"]

1.3 pop

pop removes the last element from an array and returns that element.

1 var colors = ["red", "orange", "yellow"];
2 var removed = colors.pop();
3 console.log(removed); // "yellow"
4 console.log(colors); // ["red", "orange"]

1.4 shift

shift removes the first element from an array and returns that element.

1 var colors = ["red", "orange", "yellow"];
2 var removed = colors.shift();
3 console.log(removed); // "red"
4 console.log(colors); // ["orange", "yellow"]

Hovering on functions

When you hover with the mouse cursor over a function in VS Code, you can see a brief
description of what the function does. This can be helpful if you’re not sure what a
function does or how to use it.

To know the length of an array, you can use the length property:

It’s a property, because arrays are objects, and length is a property of the array
object.

1 var colors = ["red", "orange", "yellow"];
2 console.log(colors.length); // 3

length is always higher than the highest index in the array by 1 since it starts from 1 and index
starts from 0, so if you have an array with 3 elements, the highest index is 2, and the length is 3.

1.5 splice

splice can add or remove elements from an array, and returns the removed elements.

It takes three arguments:

1. The index at which to start changing the array.
2. The number of elements to remove.
3. The elements to add.

So this is its syntax:

1 array.splice(start, deleteCount, item1, item2, ...)

Example on deleting elements with splice:

2

Built-in Array Methods

1 var colors = ["red", "orange", "yellow", "green", "blue"];
2 // To delete yellow and green
3 var removed = colors.splice(2, 2); // From index 2, delete 2 elements
4 console.log(colors); // ["red", "orange", "blue"]
5 console.log(removed); // ["yellow", "green"]
6

7 colors = ["red", "orange", "yellow", "green", "blue"];
8 // To delete all elements starting from index 2
9 removed = colors.splice(2); // From index 2, delete all elements

10 console.log(colors); // ["red", "orange"]
11 console.log(removed); // ["yellow", "green", "blue"]
12

13 colors = ["red", "orange", "yellow", "green", "blue"];
14 // This have no effect on the array
15 removed = colors.splice(2, 0); // From index 2, delete 0 elements
16 console.log(colors); // ["red", "orange", "yellow", "green", "blue"]

Example on adding elements with splice:

1 var colors = ["red", "orange"];
2 // To add yellow and black
3 colors.splice(1, 0, "yellow", "black"); // From index 1, delete 0

elements, add "yellow" and "black"↪→

4 console.log(colors); // ["red", "yellow", "black", "orange"]
5

6

7 colors = ["red", "orange", "yellow"];
8 // To add green and blue and remove orange
9 colors.splice(2, 1, "green", "blue"); // From index 2, delete 1 element,

add "green" and "blue"↪→

10 console.log(colors); // ["red", "orange", "green", "blue"]

1.6 slice

slice takes two arguments: the start index and the end index (not included), and returns a
new array with the elements between the start and end indexes.

Not included means that the last index is not included in the new array.

With slice, the original array is not affected.

1 var colors = ["red", "orange", "yellow", "green", "blue"];
2 var subColors = colors.slice(1, 3); // From index 1 to 3 (not included)
3 console.log(subColors); // ["orange", "yellow"]

1.7 includes

includes checks if an array includes a certain element, and returns true or false.

1 var colors = ["red", "orange", "yellow"];
2 console.log(colors.includes("yellow")); // true
3 console.log(colors.includes("purple")); // false

You can also specify a starting index from which to start searching:

3

Exercise

1 var colors = ["red", "orange", "yellow", "green", "blue"];
2 console.log(colors.includes("orange", 2)); // false

Here the color "orange" already exists in the array, but since we specified the starting index as
2, it starts searching from index 2, and "orange" is at index 1, so it returns false.

1.8 indexOf & lastIndexOf

indexOf returns the first index at which a given element can be found in the array, or -1 if it is
not present.

1 var colors = ["red", "orange", "yellow", "green", "blue"];
2 console.log(colors.indexOf("green")); // 3
3 console.log(colors.indexOf("purple")); // -1

If the array contains two similar elements, indexOf returns the index of the first one:

1 var colors = ["orange", "red", "yellow", "red"];
2 console.log(colors.indexOf("red")); // 1

What if you want to get the index of the last occurrence of an element? You can use lastIndexOf:

1 var colors = ["orange", "red", "yellow", "red"];
2 console.log(colors.indexOf("red")); // 1
3 console.log(colors.lastIndexOf("red")); // 3

Other Methods

There are many other methods that you can use with arrays. You can find the full list of
array methods in the MDN Web Docs.

Some methods like map, filter, reduce, and forEach were introduced in ES6, and they
are very useful when working with arrays. We will cover them in the next sessions.

2 Exercise
Try to find how many times a certain element appears in an array.

1 function getOccurrences(array, searchElement) {
2 var indices = [];
3 if (array.includes(searchElement)) {
4 for (var i = 0; i < array.length; i++) {
5 if (array[i] === searchElement) {
6 indices.push(i);
7 }
8 }
9 return indices;

10 } else {
11 return 0;
12 }
13 }
14

4

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

CRUD Operations

15 var numbers = [1, 2, 3, 4, 1, 1, 1, 1];
16 console.log(getOccurrences(numbers, 1)); // [0, 4, 5, 6, 7]

3 CRUD Operations
CRUD stands for Create, Read, Update, and Delete. These are the four basic operations
that can be performed on data. You can also add S for Search.

Any software application that works with data usually performs these operations.

When working making your website always finish the design first (the HTML and CSS), then
add the functionality (JavaScript).

Also when solving a problem using JS divide it into smaller tasks, and solve each task separately.

Important:

Watch the CRUD example system videos from video 4 to 9.

When getting an element from the DOM using document.getElementById("id"), you can use
console.log(element) it to make sure you got the right element.

When JS deals with HTML it converts the HTML tags to objects each with its own properties
and methods and each attribute in the HTML tag is a property in the object, and you can
manipulate these objects using JS.

1 var addBtn = document.getElementById("addBtn");
2

3 addBtn.onclick = addProduct; // IMPORTANT: Don't add () after the function
name↪→

4

5 function addProduct() {
6 var prodName = document.getElementById("prodName").value;
7 console.log(prodName);
8 };

In this code we assigned the addProduct function to the onclick event of the addBtn button,
and we didn’t add () after the function name, because we don’t want to call the function
immediately, we want to call it when the button is clicked.

The addProduct function gets the value of the input with the id prodName and logs it to the
console.

Important Note:

You shouldn’t put this line before the function:
var prodName = document.getElementById("prodName").value;
Because the input field will not have a value when the page loads, and you want to get the
value when the button is clicked, as the user will press it after typing the product name.

5

Summary

4 Summary
In this session we learned about the following array methods:

• push adds an element to the end of an array, and returns the new length of the array.
• unshift adds an element to the beginning of an array, and returns the new length of the

array.
• pop removes the last element from an array, and returns that element.
• shift removes the first element from an array, and returns that element.
• splice can add or remove elements from an array, and returns the removed elements.
• slice returns a new array with the elements between the start and end indexes.
• includes checks if an array includes a certain element, and returns true or false.
• indexOf returns the first index at which a given element can be found in the array, or -1

if it is not present.
• lastIndexOf returns the index of the last occurrence of an element in an array.

We also learned about CRUD operations, and how to manipulate the DOM using JavaScript.

6

Session 19

Mohamed Emary

May 31, 2024

1 Local Storage
Local storage is a way to store data in the browser (client-side storage). It is a key-value pair
storage limited storage (5MB).

When we say it’s Local Storage, it means it’s local to the browser. It is not stored on the server.
It is stored on the client’s machine, so it is not shared with other users.

To see the local storage in the browser, open the developer tools and go to the Application tab.
Then, click on Local Storage.

You can only store strings in the local storage.

To store a value in the local storage, you can use the setItem() method. The setItem()
method takes two parameters: the key and the value.

1 localStorage.setItem('name', 'Mohamed');

Keys are unique. If you set a value to a key that already exists, it will overwrite the old value.

1 localStorage.setItem('name', 'Ahmed');

Now the value of the key name is Ahmed.

To get a value from the local storage, you can use the getItem() method. The getItem()
method takes one parameter: the key.

1 var name = localStorage.getItem('name');
2 console.log(name); // Ahmed

To remove a value from the local storage, you can use the removeItem() method. The
removeItem() method takes one parameter: the key.

1 localStorage.removeItem('name');
2 var name = localStorage.getItem('name');
3 console.log(name); // null

To know how many items are stored in the local storage, you can use the length property.

1

Storing Objects

To clear the local storage, you can use the clear() method. The clear() method takes no
parameters.

1 localStorage.setItem('name', 'Mohamed');
2 localStorage.setItem('age', '25');
3 console.log(localStorage.length); // 2
4 localStorage.clear();
5 var name = localStorage.getItem('name');
6 var age = localStorage.getItem('age');
7 console.log(name); // null
8 console.log(age); // null

To know which key at a specific index, you can use the key() method. The key() method takes
one parameter: the index.

1 localStorage.setItem('name', 'Mohamed');
2 localStorage.setItem('age', '25');
3 console.log(localStorage.key(0)); // name
4 console.log(localStorage.key(1)); // age

You shouldn’t store sensitive data in the local storage because it’s not secure. It’s accessible by
anyone who has access to the client’s machine.

We don’t get all data from backend some data that are not sensitive like language. can be stored
in the local storage.

Local storage data are not removed even if you close the browser. It will be removed when you
clear the local storage or when you delete the browser’s data.

2 Session Storage
Session storage is similar to local storage, but it’s for the session only which means it’s removed
when the session is ended like when you close the tab or the browser.

We have a method called sessionStorage that works the same as localStorage with the same
methods and properties like:

• setItem()

• getItem()

• removeItem()

• length

• clear()

• key()

3 Storing Objects
As we mentioned before, you can only store strings in the local storage. If you want to store an
object, you need to convert it to a string using JSON.stringify().

1 var person = {
2 name: 'Mohamed',
3 age: 25
4 };
5

6 localStorage.setItem('person', JSON.stringify(person));

To get the object from the local storage, you need to parse the string using JSON.parse().

2

Accepting Image As Input

1 var person = JSON.parse(localStorage.getItem('person'));
2 console.log(person.name); // Mohamed
3 console.log(person.age); // 25

The same can be done with arrays:

1 var people = [
2 { name: 'Mohamed', age: 25 },
3 { name: 'Ahmed', age: 30 },
4 { name: 'Ali', age: 35 }
5];
6

7 localStorage.setItem('people', JSON.stringify(people));
8 var people = JSON.parse(localStorage.getItem('people'));
9 console.log(people[1]); // { name: 'Ahmed', age: 30 }

4 Accepting Image As Input
With the input element where the user can select an image, you will specify the type as file
you can also specify the accept attribute to specify the type of files that the user can select, for
example, image/png, image/jpeg, or image/* to accept all image types, and you can also use
the attribute multiple to allow the user to select multiple files.

1 <input type="file" accept="image/*" id="imgInput" />
2 <button id="upload">Upload</button>

This will create an input field that accepts all image types.

In your JavaScript code when you console.log the value of the file input element, you will
get a C:\fakepath\ followed by the image file name, so for example if your image file name is
my_image.jpg the console output will be C:\fakepath\my_image.jpg

1 var imgInput = document.getElementById('imgInput');
2 console.log(imgInput.value); // C:\fakepath\my_image.jpg

This C:\fakepath\ is a browser standard that doesn’t depend on the operating system and it’s
used by the browser with any file the user uploads not just images. This is done for security
reasons to prevent the website from knowing the user’s file system structure.

For example if the real file path was C:\Users\Ahmed\TopSuperSecretProject\Very
ImportantImg.png, then by uploading it you’d be exposing that your real name is Ahmed and
you’re working on TopSuperSecretProject which is a security risk.

Since C:\fakepath\ is a browser standard, you can see it in any operating system even those
with no C:\ partition like macOS or Linux.

So how can you display the image?

You can get the file object from the input element using the files property. The
imgInput.files is a FileList object that contains the multiple files the user selected in case
the input element has the multiple attribute. If the input element doesn’t have the multiple
attribute, then you can access the one file using imgInput.files[0].

You can access the file name using name property.

3

String Methods

1 var imgInput = document.getElementById('imgInput');
2 console.log(imgInput.files[0].name); // my_image.jpg

To display the image we get the file object from the input element, then we use the
createObjectURL() method to create a URL for the file object, then we can use that URL to
display the image in the browser using the src attribute of an image element.

Consider this example:

In HTML:

1 <input type="file" accept="image/*" id="imgInput" />
2 <button id="upload">Upload</button>
3

In JavaScript:

1 var imgInput = document.getElementById('imgInput');
2 var upload = document.getElementById('upload');
3 var img = document.getElementById('img');
4 upload.onclick = function() {
5 var file = imgInput.files[0];
6 if (file) {
7 var objectURL = URL.createObjectURL(file);
8 // set the src attribute of the image element to the object URL
9 img.src = objectURL;

10 }
11 };

This is how the page will look like:

Figure 1: Image Upload

5 String Methods
Strings have many methods that you can use to manipulate strings. Here we will discuss some
of the most common methods.

5.1 charAt(), [], at()

The charAt() method returns the character at a specified index (position) in a string.

4

String Methods

1 var str = 'Hello, World!';
2 console.log(str.charAt(0)); // H
3 console.log(str.charAt(7)); // W

You can also use square brackets [] to access the character at a specific index.

1 var str = 'Hello, World!';
2 console.log(str[0]); // H
3 console.log(str[7]); // W

The at() method returns the character at a specified index (position) in a string, but it also
supports negative indexes.

1 var str = 'Hello, World!';
2 console.log(str.at(0)); // H
3 console.log(str.at(7)); // W
4 console.log(str.at(-1)); // !
5 console.log(str.at(-3)); // l

5.2 slice()

The slice() method extracts a part of a string and returns a new string.

The slice() method takes two parameters: the start index and the end index. The slice()
method extracts up to but not including the end index.

If you don’t specify the end index, the slice() method will extract to the end of the string.

The slice() method also supports negative indexes.

Syntax:

1 string.slice(start, end(optional))

Example:

1 var str = 'Hello, World!';
2 console.log(str.slice(3, 6)); // lo,
3 console.log(str.slice(3)); // lo, World!
4 console.log(str.slice(-6, -1)); // World
5 console.log(str.slice(-6)); // World!

5.3 substring()

The substring() method extracts the characters in a string between two specified indices.

The substring() method takes two parameters: the start index and the end index.

The substring() method is similar to the slice() method, but it doesn’t support negative
indexes.

Syntax:

1 string.substring(start, end(optional))

Example:

5

String Methods

1 var str = 'Hello, World!';
2 console.log(str.substring(3, 6)); // lo,
3 console.log(str.substring(3)); // lo, World!

5.4 toUpperCase(), toLowerCase()

The toUpperCase() method converts a string to uppercase letters.

The toLowerCase() method converts a string to lowercase letters.

Example:

1 var str = 'Hello, World!';
2 console.log(str.toUpperCase()); // HELLO, WORLD!
3 console.log(str.toLowerCase()); // hello, world!

5.5 toLocaleUpperCase(), toLocaleLowerCase()

The toUpperCase() and toLowerCase() methods in JavaScript convert a string to uppercase
and lowercase respectively, without considering the locale of the user’s environment.

On the other hand, toLocaleUpperCase() and toLocaleLowerCase() methods also convert
a string to uppercase and lowercase respectively, but they take into account the locale of the
user’s environment. This means that they respect the language rules for casing.

For example, in Turkish, the lowercase I is ı and the uppercase i is İ. The toUpperCase()
and toLowerCase() methods do not handle this correctly, while toLocaleUpperCase() and
toLocaleLowerCase() do.

Here’s an example:

1 let str = 'i';
2 console.log(str.toUpperCase()); // I
3 console.log(str.toLocaleUpperCase('tr-TR')); // İ
4

5 str = 'I';
6 console.log(str.toLowerCase()); // i
7 console.log(str.toLocaleLowerCase('tr-TR')); // ı

The output of both toUpperCase() and toLowerCase() is wrong for the Turkish language,
while the output of both toLocaleLowerCase() and toLocaleUpperCase() is correct.

5.6 includes()

The includes() method checks if a string contains a specified value.

The includes() method returns true if the string contains the specified value, otherwise it
returns false.

Syntax:

1 string.includes(searchValue, start(optional))

Example:

1 var str = 'Hello, World!';
2 console.log(str.includes('Hello')); // true

6

String Methods

3 console.log(str.includes('hello')); // false
4 console.log(str.includes('Hello', 0)); // true
5 console.log(str.includes('Hello', 1)); // false
6 console.log(str.includes('')); // true (empty string is always included)

5.7 concat()

The concat() method concatenates two or more strings and returns a new string.

Syntax:

1 string.concat(string1, string2, ..., stringN)

Example:

1 var str1 = 'Hello ';
2 var str2 = 'JS ';
3 var str3 = 'and ';
4 var str4 = 'the World!';
5 console.log(str1.concat(str2, str3, str4)); // Hello JS and the World!

5.8 trim(), trimStart(), trimEnd()

The trim() method removes whitespace from both ends of a string.

The trimStart() method removes whitespace from the beginning of a string.

The trimEnd() method removes whitespace from the end of a string.

Example:

1 var str = ' Hello, World! ';
2 console.log(str.trim()); // 'Hello, World!'
3 console.log(str.trimStart()); // 'Hello, World! '
4 console.log(str.trimEnd()); // ' Hello, World!'

5.9 split()

The split() method splits a string into an array of substrings.

The split() method takes two parameters: the separator and the limit.

The split() method splits the string at each occurrence of the separator.

If you don’t specify the limit, the split() method will split the string into all substrings.

Syntax:

1 string.split(separator, limit(optional))

Example:

1 var str = 'Hello JS and the World!';
2 console.log(str.split(' ')); // ['Hello', 'JS', 'and', 'the', 'World!']
3 console.log(str.split(' ', 2)); // ['Hello', 'JS']
4 console.log(str.split('')); // ['H', 'e', 'l', ..., '!']
5 console.log(str.split(' ', 0)); // []

7

String Methods

6 console.log(str.split('', 3)); // ['H', 'e', 'l']
7 console.log(str.split('and')); // ['Hello JS ', ' the World!']

5.10 join()

If you have an array of strings and you want to join them into a single string, you can use the
join() method.

Syntax:

1 array.join(separator)

Example:

1 var arr = ['Hello', 'JS', 'and', 'the', 'World!'];
2 console.log(arr.join(' ')); // Hello JS and the World!
3 console.log(arr.join('')); // HelloJSandtheWorld!
4 console.log(arr.join()); // Hello,JS,and,the,World!
5 console.log(arr.join(',')); // Hello,JS,and,the,World!

From the last two lines we can see that if we don’t specify the separator, the default separator
is a comma.

Example on using split() with slice() and join():

1 var str = 'Hello JS and the World!';
2 var res = str.split(' ').slice(1, 4).join('-');
3 console.log(res); // JS-and-the

The result of split(' ') is ['Hello', 'JS', 'and', 'the', 'World!'], then we use
slice(1, 4) to get the elements from index 1 to index 3 (not including index 4) which
are ['JS', 'and', 'the'], then we use join('-') to join them with a hyphen - to get
JS-and-the.

5.11 repeat()

The repeat() method returns a new string with a specified number of copies of an existing
string.

Syntax:

1 string.repeat(count)

Example:

1 var str = 'Hello, World!';
2 console.log(str.repeat(3)); // Hello, World!Hello, World!Hello, World!
3 console.log(str.at(-1).repeat(3)); // !!!

5.12 replace(), replaceAll()

The replace() method searches a string for a specified value, or a regular expression, and
returns a new string where the specified values are replaced.

The replace() method takes two parameters: the value to search for, and the value to replace
it with.

8

Searching in CRUD System

The replace() method only replaces the first occurrence of the specified value.

The replaceAll() method is similar to the replace() method, but it replaces all occurrences
of the specified value.

Syntax:

1 string.replace(searchValue, replaceValue)

Example:

1 var str = 'HTML and CSS and JS';
2 console.log(str.replace('and', 'AND')); // HTML AND CSS and JS
3 console.log(str.replaceAll('and', 'AND')); // HTML AND CSS AND JS

5.13 padStart(), padEnd()

The padStart() method pads a string with another string until the resulting string reaches the
specified length.

The padEnd() method pads a string with another string until the resulting string reaches the
specified length.

Syntax:

1 string.padStart(targetLength, padString(optional))
2 string.padEnd(targetLength, padString(optional))

Example:

1 var str = '99';
2 console.log(str.padStart(10)); // ' 99'
3 console.log(str.padEnd(10)); // '99 '
4 console.log(str.padStart(10, '0')); // '0000000099'
5 console.log(str.padEnd(10, '0')); // '9900000000'

6 Searching in CRUD System
There is two types of search:

1. Real-time search: The search is done while the user is typing, it provides a better user
experience but also comes with a performance cost.

2. Search button: The search is done when the user clicks on the search button.

6.1 Real-time Search
You can handle this by using the keyup event which is triggered when the user releases a key,
you can also use the input event which is better and triggered when the value of the input
element changes this is better because not all keys change the value of the input element like
the arrow keys or the control keys.

HTML:

1 <input type="text" id="search" />

JavaScript:

9

Searching in CRUD System

1 var search = document.getElementById('search');
2 search.oninput = function() {
3 console.log(search.value);
4 };

This will log the value of the input element whenever the user changes it.

6.2 Search Button
You can handle this by using the onclick event which is triggered when the user clicks on the
search button.

HTML:

1 <input type="text" id="search" />
2 <button id="searchBtn">Search</button>

JavaScript:

1 var search = document.getElementById('search');
2 var searchBtn = document.getElementById('searchBtn');
3 searchBtn.onclick = function() {
4 console.log(search.value);
5 };

This will log the value of the input element whenever the user clicks on the search button.

6.3 Example of Real-time Search CRUD System
This is an example of a real-time search in a CRUD system where the user inputs some product
names and can search for them in real-time.

For simplicity, the JS code is written in the <script> tag of the HTML file:

In HTML:

1 <h2>Product Management</h2>
2 <input type="text" id="productName" placeholder="Enter product name" />
3 <button onclick="addProduct()">Add Product</button>
4 <h2>Product List</h2>
5 <ul id="productList">
6 <h2>Search Product</h2>
7 <input
8 type="text"
9 id="searchProduct"

10 placeholder="Search product"
11 oninput="searchProduct()" />

In JavaScript:

1 var products = [];
2

3 function addProduct() {
4 var productName = document.getElementById("productName");
5 if (productName.value) { // check if the input is not empty
6 products.push(productName.value);

10

Searching in CRUD System

7 productName.value = "";
8 displayProducts();
9 }

10 }
11

12 function displayProducts() {
13 var productList = document.getElementById("productList");
14 productList.innerHTML = "";
15 for (var i = 0; i < products.length; i++) {
16 productList.innerHTML += ` ${products[i]} `;
17 }
18 }
19

20 function searchProduct() {
21 var searchValue =

document.getElementById("searchProduct").value.toLowerCase();↪→

22 var productList = document.getElementById("productList");
23 productList.innerHTML = "";
24 for (var i = 0; i < products.length; i++) {
25 // toLowerCase() is used to make the search case-insensitive
26 if (products[i].toLowerCase().includes(searchValue)) {
27 productList.innerHTML += ` ${products[i]} `;
28 }
29 }
30 }

This is how the page will look:

Figure 2: After Adding All Products

Figure 3: While Searching. . .

You may notice that all elements appear when the search input is empty, this is because when
the search input is empty, the searchValue is an empty string which is included in all strings.

Code Link to try it yourself.

11

https://gist.github.com/MohamedEmary/f221e02b5738f932de0981c56e6cb291

Summary

7 Summary
Local Storage

• Local storage is a way to store data in the browser with a maximum storage of 5MB.
• It’s limited to the browser and not shared with other users or the server.
• You can only store strings in local storage.
• Data is not removed when you close the browser tab, but it’s removed when you clear the

local storage or browser data.

Session Storage

• Session storage is similar to local storage but data is removed when the session is ended
(e.g. closing the tab or browser).

• The same methods and properties are used to work with session storage as local storage.

Storing Objects

• To store objects in local storage, you need to convert them to strings using
JSON.stringify() and convert them back from JSON using JSON.parse() when
retrieving them.

Accepting Image As Input

• With an input element of type file, you can specify what file types the user can select
using the accept attribute.

• You can also specify if the user can select multiple files using the multiple attribute.
• To get the file name, you can use the files property of the input element.
• To display the image, you can get the file object from the input element and use the

createObjectURL() method to create a URL for the file object.

String Methods

• This section covers common string methods including:
◦ charAt() - returns the character at a specified index.
◦ slice() - extracts a part of a string and returns a new string.
◦ substring() - similar to slice but doesn’t support negative indexes.
◦ toUpperCase() - converts a string to uppercase letters.
◦ toLowerCase() - converts a string to lowercase letters.
◦ includes() - checks if a string contains a specified value.
◦ concat() - concatenates two or more strings.
◦ trim() - removes whitespace from both ends of a string.
◦ split() - splits a string into an array of substrings.
◦ join() - joins an array of strings into a single string.
◦ repeat() - returns a new string with a specified number of copies of an existing

string.
◦ replace() - searches a string for a specified value and replaces it with another value.

12

Summary

◦ padStart() - pads a string with another string to a specified length from the left
side.

◦ padEnd() - pads a string with another string to a specified length from the right side.

Searching in CRUD System

• There are two types of search: real-time search and search with a button.
• Real-time search is done while the user is typing using the input event.
• Search with a button is done when the user clicks on a search button using the onclick

event.
• The provided code shows an example of a real-time search for products in a CRUD system.

13

Session 20

Mohamed Emary

June 3, 2024

1 DOM (Document Object Model)
When the browser loads an HTML document, it creates a tree-like structure in memory. This
structure is called the Document Object Model (DOM). The DOM represents the document as
nodes and objects, allowing you to interact with the document using JavaScript.

For example if you have an tag in your HTML, this tag will be represented as an object
in the DOM, and its attributes (e.g., src, alt, width, height) will become properties of this
object and can be accessed and modified using JavaScript.

But what is the difference between HTML and DOM? In short, HTML represents the
initial page content and the DOM (Document Object Model) represents the current content in
a tree of objects. If you have a html page and add a tag with javascript, the actual HTML of
the page is still the same, but the “DOM” however has changed.

2 Selecting Elements in the DOM
Suppose you have this HTML element:

1 <div id="myElement" class="myClass"></div>

To select that element using JavaScript there are several ways to do that. Here are some common
methods:

1. getElementById: This method returns the element with the specified ID. (Note: IDs
must be unique within the document.)

1 var element = document.getElementById('myElement');

2. getElementsByClassName: This method returns a collection of elements with the specified
class name.

1 var elements = document.getElementsByClassName('myClass');

3. getElementsByTagName: This method returns a collection of elements with the specified
tag name.

1

Selecting Elements in the DOM

1 var elements = document.getElementsByTagName('div');

4. getElementsByName: This method returns a node list of elements with the specified name
attribute.

1 var elements = document.getElementsByName('myName');

5. querySelector: This method returns the first element that matches the specified CSS
selector.

1 var element = document.querySelector('.myClass');

6. querySelectorAll: This method returns a node list of elements that match the specified
CSS selector.

1 var elements = document.querySelectorAll('.myClass');

getElementsByClassName, getElementsByTagName return a collection of elements called
HTMLCollection, which is an array-like object. If you want to access a specific element, you
can use the index like elements[0].

Since HTMLCollection is not an actual array, you can’t use array methods like join, push, pop,
etc. To convert it to an array, you can use the Array.from method.

1 var elements = document.getElementsByClassName ('myClass');
2 var elementsArray = Array.from(elements);

Now you can use array methods on elementsArray.

getElementsByName, querySelectorAll return a NodeList, which is also an array-like object
that you can loop through and access elements by index and you can’t use array methods on it.
You can also convert it to an array using Array.from.

The difference between HTMLCollection and NodeList is that NodeList is a list of nodes,
not just elements. For example, it can contain text nodes, comment nodes, etc. While
HTMLCollection only contains elements.

There is some elements that are built-in properties of the document object:

1. document.documentElement: Returns the <html> element.
2. document.head: Returns the <head> element.
3. document.body: Returns the <body> element.
4. document.title: Returns the title of the document.
5. document.images: Returns a collection of all elements in the document.
6. document.links: Returns a collection of all <a> elements with a href attribute in the

document.
7. document.forms: Returns a collection of all <form> elements in the document.
8. document.scripts: Returns a collection of all <script> elements in the document.
9. document.styleSheets: Returns a collection of all <link> and <style> elements that

have a rel attribute with the value stylesheet.

2

Event Listeners

3 Event Listeners
Event listeners are used to listen for events on a specific element and execute a JavaScript
function when that event occurs. You can add event listeners to any element in the DOM.

Syntax:

1 element.addEventListener(event, function);

• element: The element to attach the event listener to.
• event: The event to listen for (e.g., click, mouseover, keydown, etc.).
• function: The function to execute when the event occurs.

This way of adding event listeners is better than using the onEvent attribute in the HTML
because it allows you to add multiple event listeners to the same element and separate the
JavaScript code from the HTML.

Here is an example of adding an event listener to a button element:

In HTML:

1 <button id="myButton">Click me</button>

In JavaScript:

1 function sayHello() {
2 console.log('Hello!');
3 }
4

5 var button = document.getElementById('myButton');
6 // Don't use () after function name
7 button.addEventListener('click', sayHello);

Using () after the function name will execute the function immediately once the event listener
is added. You should only pass the function name without ().

But what if that function has parameters? You can use an anonymous function to pass
the parameters:

1 function sayHello(name) {
2 console.log('Hello, ' + name + '!');
3 }
4

5 button.addEventListener('click', function() {
6 sayHello('John');
7 });

The same applies to element.event way of adding event listeners:

1 function sayHello() {
2 console.log('Hello!');
3 }
4 button.onclick = sayHello;

And if the function has parameters:

3

Event Object

1 function sayHello(name) {
2 console.log('Hello, ' + name + '!');
3 }
4 button.onclick = function() {
5 sayHello('John');
6 };

What is the difference between addEventListener and element.event? The main
difference is that addEventListener allows you to add multiple event listeners to the same
element, while element.event can only have one event listener per event type.

1 var button = document.getElementById('myButton');
2 button.onclick = function() {
3 console.log('Hello!');
4 };
5

6 button.onclick = function() {
7 console.log('Goodbye!');
8 };

In this example, only the second event listener will be executed because the first one will be
overwritten.

1 var button = document.getElementById('myButton');
2 button.addEventListener('click', function() {
3 console.log('Hello!');
4 });
5

6 button.addEventListener('click', function() {
7 console.log('Goodbye!');
8 });

In this example, both event listeners will be executed in the order they were added.

4 Event Object
When an event occurs, the browser creates an event object that contains information about the
event. This object is passed as an argument to the event listener function.

Here is an example of using the event object to get information about a click event:

1 var button = document.getElementById('myButton');
2 button.addEventListener('click', function(event) {
3 console.log(event);
4 });

The event object contains information such as:

• type: The type of event (e.g., click, dblclick, mouseover, keydown, etc.).
• target: The element that triggered the event.
• clientX, clientY: The coordinates of the mouse pointer when the event occurred.
• keyCode: The key code of the key that was pressed (for keyboard events).

4

Some Common Events

Example using the event object with the whole document:

1 document.addEventListener('keydown', function(event) {
2 console.log(event.keyCode);
3 });
4

5 document.addEventListener('click', function(event) {
6 console.log(event.clientX, event.clientY);
7 console.log(event.target);
8 console.log(event.type);
9 });

5 Some Common Events
Here are some common events that you can listen for:

Mouse Related Events:

• click: The user clicks an element.
• dblclick: The user double-clicks an element.
• mousemove: The user moves the mouse.
• mouseenter: The user moves the mouse over an element.
• mouseleave: The user moves the mouse out of an element.
• mouseup: The user releases a mouse button.
• mousedown: The user presses a mouse button.
• mouseover: The user moves the mouse over an element.
• mouseout: The user moves the mouse out of an element.
• scroll: The user scrolls the page.
• drag: The user is dragging an element. (Note: you should add draggable="true" to the

element HTML code to make it draggable.)
• dragstart: The user starts dragging an element.
• dragend: The user stops dragging an element.

Keyboard Related Events:

• keyup: The user releases a key on the keyboard.
• keydown: The user presses a key on the keyboard.
• keypress: The user presses a key on the keyboard.

Input and Form Related Events:

• input: The user inputs text into an input element.
• change: The user focuses out of an input element after changing its value.
• submit: The user submits a form. This for example can be used to prevent the page

from reloading when submitting a form using event.preventDefault() (event here is
the event object passed to the event listener function not the event type).

5

Changing Element Styles

Focus Related Events:

• focus: The user focuses on an input element.
• blur: The user focuses out of an input element.

There are many more events that you can listen for. You can find a complete list of events in
the MDN Web Docs.

6 Changing Element Styles
You can change the style of an element using JavaScript by accessing its style property. This
property contains all the CSS properties of the element.

Here is an example of changing the background color of a div element:

1 var element = document.getElementById('myElement');
2 element.style.backgroundColor = 'red';

You can also change multiple styles at once using the cssText property:

1 element.style.cssText = 'background-color: red; color: white; font-size:
20px;';↪→

These properties are useful for changing styles dynamically based on user interactions or other
events.

The styles applied using the style property are inline styles, which have the highest specificity
and override any other styles defined in external CSS files or internal styles except ones with
!important.

When a style has !important and you want to override it using JavaScript, you can use the
cssText property with !important:

1 element.style.cssText = 'background-color: red !important;';

6.1 Example of Making an Element Draggable
To make an element draggable, you need to add the draggable attribute to the element and set
it to true. You can then listen for the dragend event to get the mouse coordinates and move
the element to that position.

Here is an example of making a div element draggable:

In HTML:

1 <div id="myElement" draggable="true">Drag me</div>

In JavaScript:

1 var element = document.getElementById("myElement");
2 element.style.cssText = `
3 width: 100px;
4 height: 100px;
5 line-height: 100px;
6 text-align: center;
7 background-color: gold;`;
8 element.addEventListener("dragend", function (event) {

6

https://developer.mozilla.org/en-US/docs/Web/Events

Class List

9 element.style.position = "absolute";
10 element.style.left = event.clientX + "px";
11 element.style.top = event.clientY + "px";
12 element.style.transform = "translate(-50%, -50%)";
13 });

In this code we applied some styles to the element using the cssText property, then we listened
for the dragend event to get the mouse coordinates and move the element to that position.

Don’t forget to add px after because the clientX and clientY properties return the mouse
coordinates in pixels but the unit is not specified so you need to add px after the value.

In the example above you can also use mousemove event instead of dragend to move the element
while dragging it but that will make you not able to drop it in a new position. You can for
example use that to make a simple icon that is always following the mouse cursor or to make a
simple drawing app where you draw by dragging the mouse.

7 Get, Set, and Remove Attributes
You can use the setAttribute method to set an attribute of an element and the getAttribute
method to get the value of an attribute.

Here is an example of setting and getting the src, alt attributes of an img element:

1 var img = document.getElementById('myImage');
2 img.setAttribute('src', 'image.jpg');
3 img.setAttribute('alt', 'My Image');
4

5 var src = img.getAttribute('src');
6 var alt = img.getAttribute('alt');
7 console.log(src); // Output: image.jpg
8 console.log(alt); // Output: My Image

You can also use these methods to set and get styles:

1 <div id="myElement" style="background-color: red;">lorem</div>

1 var element = document.getElementById('myElement');
2 var backgroundColor = element.getAttribute('style');
3 console.log(backgroundColor); // Output: background-color: red;
4

5 element.setAttribute('style', 'background-color: blue;');
6 backgroundColor = element.getAttribute('style');
7 console.log(backgroundColor); // Output: background-color: blue;

To remove an attribute, you can use the removeAttribute method:

1 element.removeAttribute('style');

This will remove the style attribute from the element.

8 Class List
The classList property allows you to add, remove, toggle, replace, and check if it contains
classes on an element.

7

Class List

Here is an example of adding, removing, and toggling classes on an element:

• add: Adds a class or more to the element.
• remove: Removes a class from the element.
• toggle: Toggles a class on the element (adds the class if it doesn’t exist, removes it if it

does).
• replace: Replaces a class with another class.
• contains: Checks if the element has a specific class.

1 var element = document.getElementById('myElement');
2 element.classList.add('myClass');
3 element.classList.remove('myClass');
4 element.classList.toggle('myClass'); // adds the class again
5 var hasClass = element.classList.contains('myClass');
6 console.log(hasClass); // Output: true
7 element.classList.add('oldClass');
8 element.classList.replace('oldClass', 'newClass');
9 console.log(element.classList.contains('oldClass')); // Output: false

10 console.log(element.classList.contains('newClass')); // Output: true

The classList property is useful for adding and removing classes dynamically based on user
interactions or other events.

You can pass multiple classes to the add method by separating them with a comma:

1 element.classList.add('class1', 'class2', 'class3');

8

Summary

9 Summary
• The DOM (Document Object Model) is a tree-like structure that represents the document

as nodes and objects.
• Each element in the DOM is represented as an object with properties and methods that

allow you to interact with it using JavaScript.
• HTML is the initial page content, and the DOM represents the current content in a tree

of objects.
• You can select elements in the DOM using methods like:

◦ getElementById - Returns the element with the specified ID.
◦ getElementsByClassName - Returns a collection of elements with the specified class

name.
◦ getElementsByTagName - Returns a collection of elements with the specified tag

name.
◦ getElementsByName - Returns a node list of elements with the specified name

attribute.
◦ querySelector - Returns the first element that matches the specified CSS selector.
◦ querySelectorAll - Returns a node list of elements that match the specified CSS

selector.
• HTMLCollection is an array-like object that contains elements with the same class name

or tag name, while NodeList contains nodes, not just elements.
• Event listeners are used to listen for events on elements and execute JavaScript functions

when those events occur.
• You can add event listeners using the addEventListener method.
• Event listeners can also be added using the element.event syntax but it can only have

one event listener per event type.
• Some common events include click, dblclick, mouseover, keydown, input, change,

submit, focus, blur, etc.
• The event object contains information about the event that occurred, such as the type of

event, the target element, and the mouse coordinates.
• You can change the style of an element using the style property and the cssText property.
• The setAttribute, getAttribute, and removeAttribute methods are used to get, set,

and remove attributes of an element.
• The classList property allows you to add, remove, toggle, replace, and check if it

contains classes on an element.

9

Session 21

Mohamed Emary

June 7, 2024

1 Image Slider Examples
In the first part of the session Eng. Shimaa showed us two examples of image sliders. The first
one was a simple slider that only changes the main image with the image that is clicked on.
The second one was a more complex slider with next and previous buttons, and a close button.
This one was more complex in JavaScript.

See the sliders code here.

2 Event Propagation
Event propagation is the process in which the browser determines which event handler to execute
first. There are two types of event propagation: bubbling and capturing.

• Bubbling is the default propagation method, and it starts from the target element and
bubbles up to the root element. For example if you have a parent element and a child
element inside the parent element, and you click on the child element, the event will
first be handled by the child element’s event handler, then by the parent element’s event
handler.

• Capturing is the opposite of bubbling, and it starts from the root element and goes down
to the target element. For example if you have a parent element and a child element inside
the parent element, and you click on the child element, the event will first be handled by
the parent element’s event handler, then by the child element’s event handler.

To control whether the event propagation is bubbling or capturing, you can use the
addEventListener() method with the useCapture parameter. If useCapture is true, the
event propagation is capturing, and if it is false (which is the default), the event propagation
is bubbling.

Consider the following example:

HTML:

1 <div
2 id="parent"

1

https://drive.google.com/drive/u/0/folders/1mBxD2vi_M4tdVpL3a9of4ZW0pr2Uq4j6

Event Propagation

3 style="width: 200px; height: 200px; background-color: lightblue">
4 <div
5 id="child"
6 style="width: 100px; height: 100px; background-color: lightcoral">
7 Click me!
8 </div>
9 </div>

JavaScript:

1 document.getElementById('parent').addEventListener('click', function() {
2 console.log('Parent clicked!');
3 }, true);
4

5 document.getElementById('child').addEventListener('click', function() {
6 console.log('Child clicked!');
7 }, true);

This how it will look:

Figure 1: Event Propagation

In this example, if you click on the child element, the output will be:

Parent clicked!
Child clicked!

This is because the event propagation is capturing, and the parent element’s event handler is
executed first.

But if you remove the true parameter from the addEventListener() method or set it to false
(which is the default so you don’t have to write it), the output will be:

Child clicked!
Parent clicked!

2.1 Stop Propagation
You can stop the event propagation by using the stopPropagation() method. This method
stops the event from bubbling up or capturing down the DOM tree.

Consider the same example but with this JavaScript code:

1 document.getElementById('parent').addEventListener('click', function() {
2 console.log('Parent clicked!');
3 });

2

Regular Expressions (Regex)

4

5 document.getElementById('child').addEventListener('click', function(e) {
6 console.log('Child clicked!');
7 e.stopPropagation();
8 });

In this example, if you click on the child element, the output will be:

Child clicked!

This is because the event propagation is stopped by the stopPropagation() method, and the
parent element’s event handler is not executed.

3 Regular Expressions (Regex)
A regular expression is a sequence of characters that define a search pattern. They are used for
pattern matching in strings to find or replace text and to validate text inputs like emails, phone
numbers, etc so the user can only input the correct format.

That validation should be done in both front-end and the back-end to ensure the data is correct
and secure. The front-end and back-end developers should agree on the regular expression
pattern to use.

Regex is implemented in the front-end to validate the user input before sending it to the back-end
so we can reduce the number of requests to the server to save the user time and the server
resources.

When working with Regex you can use this website to test your regular expression pattern to
see if it matches the text you want to validate.

There is also a site called I Hate Regex that has a collection of common regex patterns with
explanations.

This website provides Regex visualization so you can understand your Regex better.

3.1 Example Regular Expressions With Explanation
• /a/ matches any string that contains the character a.
• /abc/ matches any string that contains the characters abc in order.
• /(a|b|c)/, /[abc]/, or /[a-c]/ match any string that contains either a OR b OR c.
• /[a-z]/ matches any string that contains any lowercase letter.
• /[A-Z]/ matches any string that contains any uppercase letter.
• /[A-Z][a-z]/ matches any string that contains an uppercase letter followed by a lowercase

letter.
• /ˆ[A-Z][a-z]/ matches any string that starts with an uppercase letter followed by a

lowercase letter.
• /ˆ[A-Z][a-z]$/ matches any string that starts with an uppercase letter followed by a

lowercase letter and nothing else after the lowercase letter.
• /ˆ[A-Z][a-z]{3}$/ matches any string that starts with an uppercase letter followed by

three lowercase letters and nothing else after the lowercase letters.

3

https://regex101.com/
https://ihateregex.io/
https://www.debuggex.com/

Regular Expressions (Regex)

• /ˆ[A-Z]{2}[a-z]{3}$/ matches any string that starts with two uppercase letters followed
by three lowercase letters and nothing else after the lowercase letters.

• /ˆ[A-Z]{2,}[a-z]{3,6}$/ matches any string that starts with 2 or more uppercase
letters followed by 3 to 6 lowercase letters and nothing else after the lowercase letters.

• /[0-9]/ matches any string that contains any digit.
• /ˆ([0-9]|10)$/ matches any string that starts with a digit from 0 to 9 or is equal to 10.
• /ˆ(Mr|Mrs|Ms)?[A-Z][a-z]+$/ matches any string that starts with an optional title (Mr,

Mrs, or Ms) followed by an uppercase letter followed by one or more lowercase letters.
• /[ah-uz]/ matches any string that contains a, or any letter from h to u, or z.

3.2 Real-World Regex Examples
• /ˆ((\+20)|0)1[0125][0-9]{8}$/ matches any string that starts with either +20 or 0

followed by 1 then a digit from 0 to 2 or 5 followed by 8 digits (Egyptian phone number
format).

• /ˆ[a-z0-9_-]{3,16}$/ Username validation (only alphanumeric characters, underscore
and hyphen, between 3 and 16 characters):

3.3 Some Characters Used in Regex
• ˆ: Matches the start of a string. OR negation when used inside [] of a character set.
• $: Matches the end of a string.
• *: Matches zero or more of the preceding element.
• +: Matches one or more of the preceding element.
• ?: Matches zero or one of the preceding element.
• .: Matches only one character of any type (Digit, Letter, Special Character).
• {n}: Matches exactly n of the preceding element.
• {n,}: Matches n or more of the preceding element.
• {n,m}: Matches between n and m of the preceding element.
• \d: Matches any digit character (only one character). Equivalent to [0-9].
• \D: Matches any non-digit character (only one character). Equivalent to [ˆ0-9].
• \w: Matches any word character (alphanumeric character plus underscore). Equivalent to

[0-9a-zA-Z_].
• \W: Matches any non-word character. Equivalent to [ˆ0-9a-zA-Z_].
• \s: Matches any whitespace character. You can also just use a space character.
• \S: Matches any non-whitespace character.

If you want your pattern to contain any of these characters, you should escape them with a
backslash \ for example if you want to match a string that contains the $ character you should
use /\$/.

4

Regular Expressions (Regex)

3.4 Some Regex Flags
• i: Case-insensitive matching.
• g: Global matching (find all matches).

3.5 How to Use Regex
There are two ways to create a regular expression:

1. Using the RegExp object constructor:

1 var re = new RegExp('pattern', 'flags');

2. Using the literal notation:

1 var re = /pattern/flags;

Where pattern is the regular expression pattern, and flags are optional flags that can be used
to change the behavior of the regular expression.

Then we can use the test() method to test if the pattern matches a string. The test() method
returns true if the pattern matches the string, and false otherwise.

1 var re = /[A-Z][a-z]{3,}/;
2

3 // true Starts with uppercase letter followed by 3 or more lowercase
letters↪→

4 console.log(re.test('Hello'));
5

6 // false Starts with a lowercase letter
7 console.log(re.test('hello'));
8

9 // false No lowercase letters after the uppercase letter
10 console.log(re.test('HELLO'));
11

12 // false lowercase letters are less than 3
13 console.log(re.test('Hi'));

Example using Regex with replace() method:

1 var re1 = /and/ig;
2 var re2 = /and/i;
3 var re3 = /and/g;
4 var re4 = /and/;
5

6 var Str = 'Sand And wind'
7

8 // Replace all occurrences of 'and' with 'or'
9 newStr = Str.replace(re1, 'or');

10 console.log(newStr); // Sor or wind
11

12 // Replace the first occurrence of 'and' or 'And' with 'or'
13 newStr = Str.replace(re2, 'or');
14 console.log(newStr); // Sor And wind
15

5

Operators

16 // Replace all occurrences of 'and' with 'or'
17 newStr = Str.replace(re3, 'or');
18 console.log(newStr); // Sor And wind
19

20 // Replace the first occurrence of 'and' with 'or'
21 newStr = Str.replace(re4, 'or');
22 console.log(newStr); // Sor And wind

Using replace() with a Regex that has the g is equivalent to using the replaceAll() method.

3.6 Example Regex With User Input
This is an example of how to use Regex with user input to validate an email address while the
user is typing:

HTML:

1 <input type="text" id="email" placeholder="Enter your email">
2 <p id="result"></p>

JavaScript:

1 var email = document.getElementById('email');
2 var result = document.getElementById('result');
3

4 email.addEventListener('input', function() {
5 var re = /ˆ[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,6}$/;
6 if (re.test(email.value)) {
7 result.textContent = 'Valid email';
8 } else {
9 result.textContent = 'Invalid email';

10 }
11 });

4 Operators

4.1 Conditional (Ternary) Operator
Ternary operator condition ? value1 : value2 can be used to write an if-else statement in
one line.

It returns value1 if condition is true, and value2 if condition is false.

1 var a = 5;
2 var b = 10;
3 var x = (a > b) ? a : b;

In this example, if a is greater than b, x will be equal to a. Otherwise, x will be equal to b.

4.2 Nullish Coalescing Operator
Nullish Coalescing Operator ?? is a new feature in JavaScript that allows you to provide a
default value for a variable if the variable is null or undefined. If the variable is null or
undefined, the result will be the default value. Otherwise, the result will be the variable itself.

6

Extras

1 var x = y ?? z;

In this line of code, if y is null or undefined, x will be z. If y is not null or undefined, x
will be y.

This is useful because it allows you to provide a default value for a variable without having to
check if the variable is null or undefined.

Without the nullish coalescing operator, you would have to do something like this:

1 var x = (y !== null && y !== undefined) ? y : z;

4.3 Chaining Operator
Chaining Operator or Safe Navigation Operator ?. is a new feature in JavaScript that
allows you to access a property of an object that may be null or undefined without causing
an error. If the property is null or undefined, the result will be undefined. Otherwise, the
result will be the property itself.

1 var x = obj?.prop;

In this line of code, if obj is null or undefined, x will be undefined and no error will be
thrown. If obj is not null or undefined, x will be equal to obj.prop.

This is useful because it eliminates the need to check each object in the chain to avoid a
TypeError being thrown when trying to access a property of null or undefined.

Without the safe navigation operator, you would have to do something like this:

1 var x = (obj !== null && obj !== undefined) ? obj.prop : undefined;

As you can see, the safe navigation operator makes the code cleaner and easier to read.

5 Extras
• is-valid and is-invalid classes in Bootstrap can be used to style the input fields based

on the validation result.
• To access the next sibling of an element you can use the nextElementSibling property.

7

Summary

6 Summary
In this session we have covered the following topics:

• We learned about image sliders and how to create them using JavaScript.
• Event propagation is the process in which the browser determines which event handler to

execute first. There are two types of event propagation: bubbling and capturing.
• We can stop the event propagation by using the stopPropagation() method.
• Regular expressions (Regex) are used for pattern matching in strings to find or replace

text and to validate text inputs.
• We learned about some common regex patterns and how to use regex in JavaScript.
• Conditional (Ternary) Operator condition ? value1 : value2 can be used to write an

if-else statement in one line.
• Nullish Coalescing Operator ?? allows you to provide a default value for a variable if the

variable is null or undefined.
• Chaining Operator ?. allows you to access a property of an object that may be null or

undefined without causing an error.
• is-valid and is-invalid classes in Bootstrap can be used to style the input fields based

on the validation result.
• To access the next sibling of an element you can use the nextElementSibling property.

8

Session 22

Mohamed Emary

June 10, 2024

1 innerHTML and innerText

1.1 innerHTML

• innerHTML returns the HTML content of an element.
• When assigning a value with HTML tags to innerHTML, the browser will render the HTML

tags as HTML elements.
• When printing the value of innerHTML of an element that contains HTML tags, the

browser will show the HTML tags in the output.

Example:

HTML:

1 <p id="example">My example paragraph</p>

JavaScript:

1 var example = document.getElementById('example');
2 console.log(example.innerHTML); // My example paragraph
3

4 example.innerHTML = 'My new paragraph';
5 console.log(example.innerHTML); // My new paragraph

1.2 innerText

• innerText returns the text content of an element.
• When assigning a value with HTML tags to innerText, the browser will render the HTML

tags as plain text.
• When printing the value of innerText of an element that contains HTML tags, the

browser will show the HTML tags in the output.

Example:

HTML:

1

Creating Elements

1 <p id="example">My example paragraph</p>

JavaScript:

1 var example = document.getElementById('example');
2 console.log(example.innerText); // My example paragraph
3

4 example.innerText = 'My new paragraph';
5 console.log(example.innerText); // My new paragraph

Here the new appear in the web page as it is because innerText does not
render HTML tags.

2 Creating Elements
To create an element, you can use the document.createElement() method. This method
creates a new element with the specified tag name.

Example:

1 var newElement = document.createElement('div');

To set the attributes of the new element, you can use the setAttribute() method or the .
notation.

Example:

1 // Using the setAttribute() method
2 newElement.setAttribute('id', 'new-element');
3 newElement.setAttribute('class', 'new-class');
4

5 // Or using the . notation
6 newElement.id = 'new-element';
7 newElement.className = 'new-class';

2.1 Appending & Prepending Elements (Child)
To append an element inside another element in the DOM, you can use the append() method,
and to prepend an element, you can use the prepend() method.

Example:

HTML:

1 <div id="parent" style="background-color: gold">
2 <p>First paragraph</p>
3 <p>Second paragraph</p>
4 </div>

JavaScript:

1 var parent = document.getElementById('parent');
2 var newElement = document.createElement('p');
3 newElement.innerText = 'New paragraph';
4

2

Creating Elements

5 // Append the new element inside the parent element
6 parent.append(newElement);

Now the result will look like this:

Figure 1: Using append

2.2 Add Element Before or After Another (Sibling)
To add an element before or after another element in the DOM, you can use the before() and
after() methods.

Example:

HTML:

1 <div id="parent" style="background-color: gold">
2 <p>First paragraph</p>
3 <p>Second paragraph</p>
4 </div>

JavaScript:

1 var parent = document.getElementById('parent');
2 var newElement = document.createElement('p');
3 newElement.innerText = 'New paragraph';
4

5 // Add the new element after the second paragraph
6 parent.after(newElement);

Now the result will look like this:

Figure 2: Using after

Note
You can only send elements as arguments to the append(), prepend(), before(), and
after() methods. If you send HTML tag or text, it will be treated as a string and not
as an element.

3

Traversing the DOM

3 Traversing the DOM
Traversing the DOM which is a way to move around the DOM tree and select elements based
on their relationship to other elements.

Some useful properties and methods for traversing the DOM are:

1. parentElement: returns the parent element of an element.
2. parentNode: returns the parent node of an element.
3. firstElementChild: returns the first child element of an element.
4. lastElementChild: returns the last child element of an element.
5. children: returns an HTML collection of an element’s child elements.
6. childNodes: returns a NodeList of an element’s child nodes.
7. nextElementSibling: returns the next sibling element of an element.
8. previousElementSibling: returns the previous sibling element of an element.
9. nextSibling: returns the next sibling node of an element.

10. previousSibling: returns the previous sibling node of an element.

Example:

HTML:

1 <div id="parent" style="background-color: gold">
2 <p id="p1">First paragraph</p>
3 <p>Second paragraph</p>
4 </div>

JavaScript:

1 var parent = document.getElementById('parent');
2 var p1 = document.getElementById('p1');
3

4 // Get the parent element of the first paragraph
5 var parentElement = p1.parentElement;
6 console.log(parentElement.id); // parent
7

8 // Get the parent node of the first paragraph
9 var parentNode = p1.parentNode;

10 console.log(parentNode.id); // parent
11

12 // Get the first child of the parent element
13 var firstChild = parent.firstElementChild;
14 console.log(firstChild.innerText); // First paragraph
15

16 // Get the last child of the parent element
17 var lastChild = parent.lastElementChild;
18 console.log(lastChild.innerText); // Second paragraph
19

20 // Get all the child elements of the parent element
21 var children = parent.children;

4

Important Differences

22 console.log(children.length); // 2
23 console.log(children[1]); // <p>Second paragraph</p>
24

25 // Get all the child nodes of the parent element
26 var childNodes = parent.childNodes;
27 console.log(childNodes.length); // 3
28 console.log(childNodes[1]); // #text
29

30 // Get the next sibling element of the first paragraph
31 var nextSibling = p1.nextElementSibling;
32 console.log(nextSibling.innerText); // Second paragraph
33

34 // Get the previous sibling element of the second paragraph
35 var previousSibling = lastChild.previousElementSibling;
36 console.log(previousSibling.innerText); // First paragraph
37

38 // Get the next sibling node of the first paragraph
39 var nextNode = p1.nextSibling;
40 console.log(nextNode); // #text
41

42 // Get the previous sibling node of the second paragraph
43 var previousNode = lastChild.previousSibling;
44 console.log(previousNode); // #text

4 Important Differences

4.1 previousSibling, nextSibling VS previousElementSibling,
nextElementSibling

• previousSibling and nextSibling return nodes and these nodes include both element
nodes and non-element nodes (like text and comment nodes).

• previousElementSibling and nextElementSibling return only element nodes and ig-
nore text and comment nodes.

1 <div>
2 <p>Paragraph 1</p>
3 Text
4 <p>Paragraph 2</p>
5 </div>

If the current node is the first <p> element, nextSibling would return the text node Text,
while nextElementSibling would return the second <p> element.

4.2 NodeList VS HTML Collection

NodeList HTML Collection

Static (Does not update when the DOM
changes)

Live (Updates when the DOM changes)

Returns a list of nodes Returns a list of elements

5

Browser Object Model (BOM)

NodeList HTML Collection

Nodes can be of any type like element, text,
comment, etc.

Elements only

Returned by methods like
querySelectorAll, childNodes

Returned by methods like
getElementsByTagName, children

By saying that the NodeList is static, it means that if you add an element to the DOM after
getting the NodeList, the NodeList will not include the new element. On the other hand, the
HTML Collection is live, which means that it will include the new element even after getting
the HTML Collection.

Example:

HTML:

1 <div>
2 <p>Paragraph 1</p>
3 <p>Paragraph 2</p>
4 </div>

JavaScript:

1 var div = document.querySelector('div');
2 var paragraphsCollection = div.getElementsByTagName('p');
3 var paragraphsNodeList = div.querySelectorAll('p');
4

5 console.log(paragraphsCollection.length); // 2
6 console.log(paragraphsNodeList.length); // 2
7

8 var newParagraph = document.createElement('p');
9 newParagraph.innerText = 'New paragraph';

10

11 div.append(newParagraph);
12

13 console.log(paragraphsCollection.length); // 3
14 console.log(paragraphsNodeList.length); // 2

In this example, the paragraphsCollection will have a length of 3, while the paragraphsNodeList
will have a length of 2 because the NodeList is static and does not change when the DOM
changes while the HTML Collection is live and changes when the DOM changes.

5 Browser Object Model (BOM)
Browser Object Model or BOM is a set of objects provided by the browser to interact with the
browser itself.

5.1 DOM VS BOM
The DOM can be accessed via the BOM through the window.document property. So, you can
say that the DOM is part of the BOM in a browser environment.

6

Browser Object Model (BOM)

window is a super global object in the browser environment.

DOM is concerned with the content of the web document, while the BOM is concerned with the
browser environment.

5.2 BOM Methods & Properties
Some of the BOM methods include:

5.2.1 setInterval

setInterval(): Calls a function or evaluates an expression each time a specified number of
milliseconds elapses.

For example, to display the value of a counter every second:

1 function incrementCounter() {
2 console.log(counter);
3 counter++;
4 }
5

6 var counter = 0;
7 var interval = setInterval(incrementCounter, 1000);

5.2.2 clearInterval

clearInterval(): Stops the intervals set by setInterval().

For example, to stop the counter we made earlier when the user clicks a button:

1 var button = document.getElementById('stop');
2

3 button.addEventListener('click', function() {
4 console.log("Counter stopped");
5 clearInterval(interval);
6 });

5.2.3 setTimeout

setTimeout(): Calls a function or evaluates an expression once after a specified number of
milliseconds.

For example, to display a message after 3 seconds:

1 function showMessage() {
2 console.log("Hello, world!");
3 }
4

5 setTimeout(showMessage, 3000);

5.2.4 alert

alert(): Displays an alert box with a message and an OK button.

For example:

7

Browser Object Model (BOM)

1 alert("Hello, world!");

5.2.5 open

open(): Opens a new browser window or a new tab.

For example, This will open a new tab with Google’s homepage.

1 var googleBtn = document.getElementById('open');
2 googleBtn.addEventListener('click', function() {
3 open('https://www.google.com', '_blank');
4 });

_blank is the name of the target window. It specifies that the URL should be opened in a new
tab and it’s the default value. To open the URL in the same tab, you can use _self.

open also has other parameters like width, height, top, left, etc.

1 open('https://www.google.com', '_blank',
'width=500,height=500,top=100,left=100');↪→

Notice that width, height, top, and left are passed as a string with a comma separating
them.

open is also one of window’s methods, so you can use it in the form window.open().

5.2.6 close

close(): Closes the current window.

For example, to close the current window when the user clicks a button:

1 var closeBtn = document.getElementById('close');
2 closeBtn.addEventListener('click', function() {
3 close();
4 });

5.2.7 innerWidth and innerHeight

innerWidth and innerHeight properties return the width and height of the content area of
the browser window.

If you resize the browser window, the values of innerWidth and innerHeight will change
accordingly.

1 console.log(window.innerWidth);
2 console.log(window.innerHeight);

5.2.8 screen Object

The screen object provides information about the user’s screen.

Some of the properties of the screen object include:

• screen.width: Returns the width of the screen.
• screen.height: Returns the height of the screen.

8

API

Those properties don’t change when you resize the browser window because they are related to
the user’s screen (the hardware) and not the browser window.

1 console.log(screen.width);
2 console.log(screen.height);

screen object also has other properties like availWidth, availHeight.

These are the areas of the screen that you can use to display content, it doesn’t include the
taskbar or any other system-related areas.

1 console.log(screen.availWidth);
2 console.log(screen.availHeight);

5.3 location Object
The location object contains information about the current URL.

Some of the properties of the location object include:

• location.href: Returns the entire URL.
• location.hostname: Returns the domain name of the web host.
• location.pathname: Returns the path and filename of the current page.
• location.history: Returns the history of the current page.

◦ location.history.back(): Goes back to the previous page.
◦ location.history.forward(): Goes forward to the next page.

6 API
API (Application Programming Interface) is universal way for different software applications to
communicate with each other.

APIs can be used to recieve data from a server, send data to a server, modify data on a
server, and delete data from a server.

The API comes in the form of a URL that you can send a request to and get a response from.

Send RequestSend Request

Recieve ResponseRecieve Response

WebsiteWebsiteBrowserBrowser

Figure 3: Request & Response

When dealing with APIs the front-end developer takes the API from the back-end developer
with the documentation of how to use it. Example API documentation.

9

https://forkify-api.herokuapp.com/

API

Then the front-end developer uses the API to get the data needed to display on the web page.

A good way to test an APIs is to use a tool like Postman, which is a collaboration platform for
API development.

6.1 JSON
When you get a response from an API, it’s usually in the form of JSON (JavaScript Object
Notation).

JSON objects are easy to read and write. They are human-readable and can be parsed by
JavaScript. JSON objects are written in key/value pairs and can be either an object or an array
of objects.

Example of a JSON object:

1 {
2 "name": "Mohamed",
3 "age": 30,
4 "city": "Cairo"
5 }

6.2 Free APIs
There are many free APIs available that you can use to practice working with APIs.

Example Free APIs:

• JSONPlaceholder
• Forkify Meals API
• Random User Generator API
• Weather API
• News API
• MovieDB API
• Fake Store API

You can find many more on this public-apis GitHub repo.

6.3 Terms Related to APIs
There is some terms related to APIs:

Lets use this API to explain the terms: https://api.github.com/users/Microsoft

• Base URL: The main URL of the API. For example, https://api.github.com/

• Endpoint: The part of the URL after the base URL that specifies a particular resource
or collection of resources. For example, /users/Microsoft is the endpoint in the URL
https://api.github.com/users/Microsoft.

• Request: The action you want the API to perform. In this case, a GET request to
https://api.github.com/users/Microsoft to retrieve the data of the user Microsoft.

10

https://www.postman.com/
https://jsonplaceholder.typicode.com/
https://forkify-api.herokuapp.com/
https://randomuser.me/documentation
https://www.weatherapi.com/
https://newsapi.org/
https://www.themoviedb.org/documentation/api
https://fakestoreapi.com/
https://github.com/public-apis/public-apis

API

• Response: The data you get back from the API. This is typically in the form of a JSON
object or array.

• Status Code: A number returned by the server that indicates the result of the request.
For example, 200 means the request was successful, while 404 means the requested resource
could not be found.

• Method: The type of request you are making. Common methods include GET, POST, PUT,
DELETE, and PATCH.

◦ GET: To get data from the server.
◦ POST: To send data to the server.
◦ PUT: To update data on the server.
◦ DELETE: To delete data on the server.
◦ PATCH: To partially update data on the server.
◦ PUT: To update data on the server.

6.4 How to Use an API
To use an API, you need to know about AJAX (Asynchronous JavaScript and XML) first.

AJAX allows you to send and receive data from a server asynchronously without reloading the
page.

You can use the XMLHttpRequest object to interact with the server and get data from it. We
don’t use the object directly, but we create a new instance of it and use its methods.

Example of creating an instance of XMLHttpRequest:

1 var xhr = new XMLHttpRequest();

Then you can use the open() method to establish a connection with the server by specifying
the request method and the API URL.

1 xhr.open('METHOD', 'API_URL');

For example to establish a connection with the forkify API using the GET method:

1 xhr.open('GET', 'https://forkify-api.herokuapp.com/api/search?q=pizza');

After opening the connection, you can use the send() method to send the request to the server.

1 xhr.send();

To handle the response from the server, you can use the onload event handler.

1 xhr.addEventListener('load', function() {
2 console.log(xhr.response);
3 });

The response property of the XMLHttpRequest object contains the response data from the
server as a string, so you need to parse it to a JSON object.

1 xhr.addEventListener('load', function() {
2 var data = JSON.parse(xhr.response);
3 console.log(data);
4 });

11

API

Now you can access the data returned by the API.

1 xhr.addEventListener('load', function() {
2 var data = JSON.parse(xhr.response);
3 console.log(data.recipes);
4 });

You can also use readystatechange event handler to check the status of the request before
accessing the data.

1 xhr.addEventListener('readystatechange', function() {
2 if (xhr.readyState === 4 && xhr.status === 200) {
3 var data = JSON.parse(xhr.response);
4 console.log(data.recipes);
5 }
6 });

readyState values are:

• 0: request not initialized
• 1: server connection established
• 2: request sent
• 3: processing request
• 4: request finished and response is

ready

status values are:

• 200: OK (request successful)
• 403: Forbidden (access denied)
• 404: Not Found (resource not found)
• 500: Internal Server Error

Here is the complete code to get data from the forkify API:

1 var xhr = new XMLHttpRequest();
2 xhr.open('GET', 'https://forkify-api.herokuapp.com/api/search?q=pizza');
3 xhr.send();
4

5 xhr.addEventListener('load', function() {
6 if (xhr.readyState === 4 && xhr.status === 200) {
7 var data = JSON.parse(xhr.response);
8 console.log(data.recipes);
9 }

10 });

We also have error event handler to handle errors when the request fails.

1 xhr.addEventListener('error', function() {
2 console.log('An error occurred');
3 });

6.5 Displaying Data from an API
This is an example of how to display data from an API on a web page.

HTML:

1 <div class="container">
2 <div class="row" id="rowBody"></div>

12

API

3 </div>

JavaScript:

1 var xhr = new XMLHttpRequest();
2 var allRecipies = [];
3 xhr.open("get", "https://forkify-api.herokuapp.com/api/search?q=pizza");
4 xhr.send();
5 xhr.addEventListener("readystatechange", function () {
6 if (xhr.readyState == 4 && xhr.status == 200) {
7 allRecipies = JSON.parse(xhr.response).recipes;
8 display();
9 }

10 });
11

12 function display() {
13 var content = ``;
14 for (var i = 0; i < allRecipies.length; i++) {
15 content += `
16 <div class="col-md-4">
17 <img
18 src="${allRecipies[i].image_url}"
19 class="w-100 rounded-2"
20 height="200px"
21 />
22 <h3>${allRecipies[i].title}</h3>
23 <p>${allRecipies[i].publisher}</p>
24 </div>`;
25 }
26 document.getElementById("rowBody").innerHTML = content;
27 }

13

Summary

7 Summary
• innerHTML returns the HTML content of an element, while innerText returns the text

content of an element.
• When assigning a value with HTML tags to innerHTML, the browser will render the HTML

tags as HTML elements.
• When assigning a value with HTML tags to innerText, the browser will render the HTML

tags as plain text.
• To create an element, you can use the document.createElement() method.
• To append an element inside another element in the DOM, you can use the append()

method, and to prepend an element, you can use the prepend() method.
• To add an element before or after another element in the DOM, you can use the before()

and after() methods.
• Traversing the DOM is a way to move around the DOM tree and select elements based on

their relationship to other elements.
• previousSibling and nextSibling return nodes and include both element nodes and

non-element nodes, while previousElementSibling and nextElementSibling return
only element nodes.

• The Browser Object Model (BOM) is a set of objects provided by the browser to interact
with the browser itself.

• Some of the BOM methods include setInterval, clearInterval, setTimeout, alert,
open, and close.

• The screen object provides information about the user’s screen, and the location object
contains information about the current URL.

• APIs (Application Programming Interfaces) are used to communicate between different
software applications.

• JSON (JavaScript Object Notation) is a common format for data exchange in APIs.
• To use an API, you need to know about AJAX (Asynchronous JavaScript and XML).
• You can use the XMLHttpRequest object to interact with the server and get data from it.
• To display data from an API on a web page, you can create an instance of XMLHttpRequest,

send a request to the API, and handle the response to access the data.
• Common HTTP methods include GET, POST, PUT, DELETE, and PATCH.
• The readyState property of the XMLHttpRequest object indicates the state of the request,

and the status property indicates the status of the response.
◦ readyState values: 0, 1, 2, 3, 4

◦ status values: 200, 403, 404, 500

14

Session 23

Mohamed Emary

June 17, 2024

1 Synchrounous & Asynchronous
A synchronous operation is one that blocks the execution of other code until it is finished, this
is also known as blocking code.

An asynchronous operation is one that does not block the execution of other code, instead, it
allows other code to continue executing while it waits for the operation to complete, this is
known as non-blocking code.

Example of synchronous code:

1 console.log('1'); // synchronous
2 console.log('2'); // synchronous
3 console.log('3'); // synchronous

1
2
3

Example of asynchronous code:

1 console.log('1'); // synchronous
2 setTimeout(function () { //

asynchronous↪→

3 console.log("2");
4 }, 1000);
5 console.log('3'); // synchronous

1
3
2

In the case of this code example, the setTimeout function is an example of an asynchronous
operation. It tells the browser to wait for a certain amount of time before executing the callback
function. While the browser is waiting, it can continue executing other code, that is why the
output of the code is 1, 3, and 2.

To understand the difference and why the output is different, we need to understand how
JavaScript works.

1.1 How JavaScript Works
JavaScript is a non-blocking single-threaded language. This means that it can only execute
one piece of code at a time. Some other languages like Java are multi-threaded, which means
that they can execute multiple pieces of code at the same time.

1

Synchrounous & Asynchronous

JavaScript runtime environment has the following components:

• Execution stack (Call Stack): where code is executed. It has the synchronous methods
and global variables

• Callback queue (Task Queue): where asynchronous tasks are placed
• Web API: a set of functions provided by the browser to handle long-running tasks that

would take a long time to execute
• Event loop: checks if there are any tasks in the callback queue

When JavaScript code is executed, it is added to the execution stack. The execution stack is
a data structure that keeps track of the execution of the code. When a function is called, it is
added to the call stack. When the function finishes executing, it is removed from the call stack.

Both execution stack and web API work at the same time to execute the code.

Synchrounous code gets executed directly in the call stack.

When JavaScript encounters an asynchronous operation, like a setTimeout function, it does
not execute the code immediately (which means adding it to the call stack), instead, it hands
off the operation to the web API provided by the browser. The web API handles the operation
in the background and when it is finished, it adds the result to the task queue then the event
loop checks if there are any tasks in the task queue and if there are, it adds them to the call
stack, but only when the call stack is empty.

The task queue tasks are divided into two categories:

• Microtasks: tasks that have high priority and have the functions that return promises,
or uses await, async.

• Macrotasks: tasks like setTimeout, setInterval.

Microtasks have higher priority than macrotasks, so they are executed first.

This diagram demonstrates what each component of the JavaScript runtime environment takes
care of:

JS Runtime Env

Execution Stack

Execution of code

Synchrounous Methods

Global Variables

Callback Queue

Microtasks

Promises

async/await

Macrotasks
setTimeout

setInterval

WebAPI

Async code and methods

like setTimeout

Event Loop

Checks if CallStack is

empty to add tasks from

Callback Queue

Figure 1: JavaScript Runtime Environment

2

Control Code Execution Flow

This image demonstrates the steps of the process:

Figure 2: How JavaScript Works

2 Control Code Execution Flow
Sometimes we need to control the flow of the code execution, for example, when we need to
execute a piece of code after another because it depends on the result of the first one.

That is when we use callbacks, promises, and async/await.

2.1 Callbacks
A callback is a function that is passed as an argument to another function. The function that
receives the callback function will execute first then it will call the callback function.

1 function first(callback) {
2 console.log('First function');
3 callback();
4 }
5

6 function second(callback) {
7 console.log('Second function');
8 callback();
9 }

10

11 function third() {
12 console.log('Third function');
13 }
14

15 first(function () {

3

Control Code Execution Flow

16 second(function () {
17 third();
18 });
19 });

This is how the code will be executed:

1. The first function is called and it logs First function.
2. Then it calls the callback function which is the second function.
3. The second function is called and it logs Second function.
4. Then it calls the callback function which is the third function.
5. The third function is called and it logs Third function.

In this code, the callback functions are wrapped in anonymous functions because if we passed the
callbacks with arguments directly (like first(second(third))), the functions will be executed
immediately.

Applying callbacks to the first example:

1 function first(callback) {
2 console.log('1');
3 callback();
4 }
5

6 function second(callback) {
7 setTimeout(function () {
8 console.log('2');
9 callback();

10 }, 1000);
11 }
12

13 function third() {
14 console.log('3');
15 }
16

17 first(function () {
18 second(function () {
19 third();
20 });
21 });

Now the functions will be executed in order and the output will be 1, 2, 3 just as we want.

We can also check if the callback function exists before calling it so we don’t call it if it doesn’t
exist.

1 function first(callback) {
2 console.log('1');
3 if (callback) {
4 callback();
5 }
6 }

4

Control Code Execution Flow

2.1.1 Callback Hell

As you can see from the code examples when we have a lot of nested callbacks, the code becomes
hard to read and maintain, this is known as Callback Hell.

For this reason, callback functions are not used a lot instead we use promises and async/await.

2.2 Promise
A promise is an object that represents the eventual completion or failure of an asynchronous
operation and its resulting value.

A promise has three states:

• Pending: the initial state, neither fulfilled nor rejected.
• Fulfilled (resolved): the operation completed successfully. Used with .then() method.
• Rejected: the operation failed. Used with .catch() method.

A promise is created using the Promise constructor:

1 var promise = new Promise(function (resolve, reject) {
2 // code here
3 });

The Promise constructor takes a function as an argument that has two parameters resolve
and reject. These parameters are functions that are used to resolve or reject the promise.

1 var promise = new Promise(function (resolve, reject) {
2 setTimeout(function () {
3 resolve('Success');
4 }, 1000);
5 });
6

7 promise.then(function (value) {
8 console.log(value);
9 });

In this example, the promise will be resolved after 1 second and the then method will be called
with the value Success.

If the promise is rejected, the catch method will be called:

1 var promise = new Promise(function (resolve, reject) {
2 setTimeout(function () {
3 reject('Error');
4 }, 1000);
5 });
6

7 promise.then(function (value) {
8 console.log(value);
9 }).catch(function (error) {

10 console.error(error);
11 });

5

Control Code Execution Flow

The value of error and value parameters are the values passed to the resolve and reject
functions, so in our case value = 'Success' and error = 'Error'.

In this example, the promise will be rejected after 1 second and the catch method will be called
with the error Error.

Note:
To be able to use .then() when calling a function the function must return a promise,
and the promise must be resolved.

2.2.1 Promise Chaining

Promises can be chained together to execute code in a specific order.

1 function one(param1) {
2 return new Promise(function(resolve, reject) {
3 // Do something with param1
4 // Resolve or reject based on the result
5 resolve('Function One processed ' + param1);
6 });
7 }
8

9 function two(param2) {
10 return new Promise(function(resolve, reject) {
11 // Do something with param2
12 // Resolve or reject based on the result
13 resolve('Function Two processed ' + param2);
14 });
15 }
16

17 function three(param3) {
18 return new Promise(function(resolve, reject) {
19 // Do something with param3
20 // Resolve or reject based on the result
21 reject('Function Three encountered an error with ' + param3);
22 });
23 }
24

25 one('input1')
26 .then(function(result1) {
27 console.log(result1);
28 return two('input2');
29 })
30 .then(function(result2) {
31 console.log(result2);
32 return three('input3');
33 })
34 .then(function(result3) {
35 console.log(result3);
36 })
37 .catch(function(error) {

6

Control Code Execution Flow

38 console.error('Error:', error);
39 });

Function One processed input1
Function Two processed input2
Error: Function Three encountered an error with input3

This is how the code will be executed:

ConsolethreetwooneGlobalScope

ConsolethreetwooneGlobalScope

Call with 'input1'

Process 'input1'

Resolve Promise

Log result1 (Function One processed input1)

Call with 'input2'

Process 'input2'

Resolve Promise

Log result2 (Function Two processed input2)

Call with 'input3'

Process 'input3'

Reject Promise

Log error (Function Three encountered an error with input3)

Figure 3: Promise Chaining

1. The one function is called with the parameter 'input1'. This function returns a new
Promise. Inside this Promise, some processing is done with 'input1', and then the
Promise is resolved with a message indicating that 'input1' has been processed.

2. The then method is called on the Promise returned by the one function. This then
method takes a function as an argument, which will be executed when the Promise is
resolved. The result of the one function (the resolve message) is logged to the console.

3. After the first then method has finished executing, it returns a new Promise by calling the
two function with the parameter 'input2'. Similar to the one function, the two function
does some processing with 'input2' and then resolves the Promise with a message.

4. The next then method is called on the Promise returned by the two function. Again, this
then method takes a function as an argument, which logs the result of the two function
to the console.

5. After the second then method has finished executing, it returns a new Promise by calling
the three function with the parameter 'input3'. However, this time, the Promise is
rejected with an error message instead of being resolved.

6. Because the Promise from the three function was rejected, the next then method is
skipped, and the catch method is called instead. The catch method also takes a function
as an argument, which logs the error message to the console.

7

Control Code Execution Flow

Note:
If the promise in the chain is rejected, the next then method is skipped, and the catch
method is called instead.

We can use .catch() method with the error event listener when calling an API so if the
API call fails, the promise will be rejected and the catch method will be called.

We also have the finally method that is called at the end of the promise chain and is called
regardless of whether the promise is resolved or rejected.

1 promise.then(function (value) {
2 console.log(value);
3 }).catch(function (error) {
4 console.error(error);
5 }).finally(function () {
6 console.log('Finally');
7 });

The Promise way of controlling the flow of the code execution can be hard to read and maintain
when we have a lot of promises, that is why we have async/await.

2.3 Async/Await
Async/await is a new way to write asynchronous code in JavaScript. It is built on top of
promises and provides a more readable and maintainable way to write asynchronous code. But
before we dive into async/await, we need to know the fetch API.

2.3.1 Fetch API

The fetch API is a modern replacement for the XMLHttpRequest object. It is used to make
network requests to a server and is built into the browser.

The fetch function takes a URL as an argument and returns a promise that resolves to the
Response object representing the response to the request.

The fetch function have a GET method by default, but we can specify the method using the
method option.

Syntax:

1 fetch(API_URL, options)
2 .then(function (response) {
3 // Do something with the response
4 })
5 .catch(function (error) {
6 // Handle any errors
7 });

The options object is a JSON object that contains the configuration for the request. Some of
the options are:

• method: the HTTP method to use for the request (e.g., GET, POST, PUT, DELETE).
• headers: an object containing the headers to include in the request.

8

Control Code Execution Flow

• body: the body of the request (e.g., JSON data).

Example:

1 fetch("https://jsonplaceholder.typicode.com/posts/1", {
2 method: "GET", // Default value you don't have to specify it
3 })
4 .then(function (response) {
5 return response.json();
6 })
7 .then(function (data) {
8 console.log(data);
9 })

10 .catch(function (error) {
11 console.error(error);
12 });

This is how the code will be executed:

1. fetch("https://jsonplaceholder.typicode.com/posts/1", { method: "GET" }):
This line sends a GET request to the specified URL. The fetch function returns a
Promise that resolves to the Response object representing the response to the request.

2. .then(function (response) { return response.json(); }): This is a Promise
chain. When the Promise from the fetch function resolves, it passes the Response object
to this function. The response.json() method reads the response body and returns
another Promise that resolves with the result of parsing the body text as JSON.

3. .then(function (data) { console.log(data); }): This is another link in the
Promise chain. When the Promise from the response.json() method resolves, it passes
the parsed JSON data to this function, which logs the data to the console.

4. .catch(function (error) { console.error(error); }): This is the error handling
part of the Promise chain. If any of the Promises in the chain reject (i.e., an error occurs),
this function will be called with the error as its argument. It logs the error to the console.

But that is still hard to read and unclear, that is why we have async/await.

2.3.2 Using Async/Await

The async and await keywords were introduced in ES8 (ECMAScript 2017) to make asyn-
chronous code easier to read and write.

The async keyword is used to define an asynchronous function, which returns a promise. The
await keyword is used to pause the execution of an asynchronous function until a promise is
resolved.

1 async function fetchData() {
2 var response = await

fetch("https://jsonplaceholder.typicode.com/posts/1");↪→

3 var data = await response.json();
4 console.log(data);
5 }
6

7 fetchData();

9

try, catch, and finally

This is how the code will be executed:

1. fetchData(): Calls the function. fetchData returns a promise because it is an asyn-
chronous function.

2. await fetch(...): Sends a request and await pauses the function until the promise
returned by fetch is resolved.

3. await response.json(): reads the response body and waits for the parsing of the body
text as JSON.

Note:
If you remove the await keyword from any of the lines then log the response or data
variables, you will get Promise<pending> because the fetch and response.json()
methods return promises.

If you have many asynchronous functions and you want to execute them in order, you
can put them inside an async function and use await keyword to wait for each function
to finish before executing the next one.

This is a more readable and maintainable way to write asynchronous code compared
to promises.

3 try, catch, and finally

The try, catch, and finally statements are used to handle errors in JavaScript code.

The try statement allows you to define a block of code to be tested for errors while it is
being executed.

The catch statement allows you to define a block of code to be executed if an error occurs
in the try block.

The finally statement allows you to define a block of code to be executed after the try and
catch blocks, regardless of whether an error occurred or not.

1 try {
2 // Code to be executed
3 } catch (error) {
4 // Code to handle the error
5 } finally {
6 // Code to be executed after the try and catch blocks
7 }

The try and catch statements are often used together with asynchronous code to handle errors
that occur during the execution of the code.

1 try {
2 var response = await

fetch("https://jsonplaceholder.typicode.com/posts/1");↪→

3 var data = await response.json();
4 console.log(data);
5 } catch (error) {

10

try, catch, and finally

6 console.error(error);
7 }

In this example, the try block contains the asynchronous code that fetches data from a URL. If
an error occurs during the execution of the code, the error is caught by the catch block and
logged to the console.

Another example:

1 try {
2 console.log(x); // we didn't define x
3 } catch (error) {
4 console.error(error); // ReferenceError: x is not defined
5 console.log(error.name); // ReferenceError
6 console.log(error.message); // x is not defined
7 } finally {
8 console.log("Finally block");
9 }

When using throw to throw an error, you don’t always use Error(), you can also use a specific
error type like ReferenceError(), TypeError(), RangeError(), etc.

1 try {
2 throw new ReferenceError("This is a reference error");
3 } catch (error) {
4 console.error(error); // ReferenceError: This is a reference error
5 console.error(error.name); // ReferenceError
6 console.error(error.message); // This is a reference error
7 }

11

Summary

4 Summary
• Synchronous code blocks the execution of other code until it is finished.
• Asynchronous code allows other code to continue executing while it waits for the

operation to complete.
• JavaScript is a non-blocking single-threaded language.
• JavaScript runtime environment has the execution stack, callback queue, web API,

and event loop.
• Code execution flow can be controlled using callbacks, promises, and async/await.
• Callbacks are functions that are passed as arguments to other functions.
• Promises are objects that represent the eventual completion or failure of an asynchronous

operation.
• Async/await is a new way to write asynchronous code in JavaScript.
• The fetch API is used to make network requests to a server.
• The try, catch, and finally statements are used to handle errors in JavaScript code.

12

Session 24

Mohamed Emary

June 27, 2024

1 "use strict"
When JavaScript was first introduced, it was a very forgiving language. It would try to make
sense of whatever code you gave it, even if it was poorly written. This could lead to bugs that
were hard to track down.

Examples of common coding problems that JavaScript would allow when it was first introduced
include:

• Using a variable and assigning a value to it without declaring it first. x = 5;

• Duplicating a parameter name. function sum(x, x) { /* function body */ }

• Using a reserved word as a variable or function name. var let = 5;

In 2009, ECMAScript 5 (ES5) introduced a new feature called “strict mode” that would help
developers catch these bugs earlier. Strict mode is a way to use to a restricted variant of
JavaScript that would catch common coding problems and throw exceptions.

Using strict mode in cases like the ones above would throw an error, which would help you
catch the bugs earlier in the development process.

To enable strict mode, you can add the following line to the top of your JS code:

1 'use strict'; // be sure to include the "quotes"

You can also enable strict mode for just a single function by adding the same line at the top of
the function.

1 function doSomething() {
2 'use strict';
3 // This code is in strict mode
4 }

Strict mode is supported in all modern browsers, and it’s a good practice to use it in your code.

1 'use strict';
2

3 function doSomething() {

1

let and const

4 // This code is in strict mode
5 }
6

7 function doSomethingElse() {
8 // This code is also in strict mode
9 }

Classes and modules which have strict mode enabled by default.

2 let and const
ES6 introduced two new ways to declare variables: let and const.

2.1 let
let is similar to var, but it has a few key differences:

• Variables declared with let are block-scoped, while variables declared with var are
function-scoped.

◦ This will save memory because the variable will only be available within the block
where it was declared, and after the block ends, the variable will be removed from
memory, this will free up memory from unnecessary variables.

• Variables declared with let are not hoisted to the top of the block, while variables
declared with var are hoisted.

• Variables declared with let cannot be redeclared in the same scope, while variables
declared with var can be.

2.2 const
const is similar to let, but it has one key difference:

• Variables declared with const cannot be reassigned to a new value.

Example of using const is to store a value that you know will not change, like the value of
π = 3.14159.

It can also be used in DOM manipulation to store references to elements that you know will not
change

1 const p = document.getElementById('myParagraph');
2

3 // Even if you change any property of the element, no problem
4 // the reference to the element is still the same
5 p.textContent = "Hello, World"

Here are some examples of using let and const:

1 // Block scope
2 {
3 let x = 5;
4 var y = 10;
5 console.log(x); // 5
6 console.log(y); // 10

2

Default Parameter Value

7 }
8 // console.log(x); // ReferenceError: x is not defined, because `let` is

block-scoped↪→

9 console.log(y); // 10
10

11 // reassignment
12 let x = 15;
13 const z = 20;
14 x = 25;
15 // z = 30; // TypeError: Assignment to constant variable, because `const`

does not allow reassignment↪→

16

17 // redeclaration
18 var y = 30;
19 var y = 35;
20

21 let a = 40;
22 // let a = 45; // SyntaxError: Identifier 'a' has already been declared

Temporal Dead Zone (TDZ) with let

Variables declared with let get hoisted to the top of the block, but they are not initialized
until the line where they are declared is reached. This is called the Temporal Dead Zone
(TDZ).

Example:
1 console.log(x); // ReferenceError: Cannot access 'x' before

initialization↪→

2 let x = 5;

2.2.1 for of & const

When using const with for of, it will not throw an error because in a for...of loop, each
iteration creates a new block scope, allowing const to be safely used without reassignment
errors.

This means it doesn’t reassign the variable, but it creates a new variable in a new scope in each
iteration.

1 const arr = [1, 2, 3, 4, 5];
2

3 for (const item of arr) {
4 console.log(item);
5 }

Note: Now you should always use either let or const, never use var again.

3 Default Parameter Value
ES6 introduced a new feature called default parameter values. This allows you to specify a
default value for a parameter in a function if no argument is provided.

3

Template Literal `String`

1 function greet(name = 'World') {
2 console.log(`Hello, ${name}!`);
3 }
4

5 greet(); // Hello, World!
6 greet('Mohamed'); // Hello, Mohamed!

This feature is useful when you want to provide a default value for a parameter if no argument
is provided.

The old way to do this was to use the || operator or an if statement:

1 // Using the || operator
2 function greet(name) {
3 name = name || 'World';
4 console.log(`Hello, ${name}!`);
5 }
6

7 greet(); // Hello, World!
8 greet('Mohamed'); // Hello, Mohamed!
9

10 // Using an if statement
11 function greet(name) {
12 if (name === undefined) {
13 name = 'World';
14 }
15 console.log(`Hello, ${name}!`);
16 }
17

18 greet(); // Hello, World!
19 greet('Mohamed'); // Hello, Mohamed!

4 Template Literal `String`
ES6 introduced a new way to create strings called template literals. Template literals are
enclosed by backticks (`) instead of single quotes (') or double quotes (").

Template literals can contain placeholders, which are indicated by the dollar sign and curly
braces (${expression}). The expression inside the curly braces is evaluated and the result is
inserted into the string.

1 let name = 'Mohamed';
2 let age = 30;
3

4 // Old way
5 let message = 'Hello, ' + name + '! You are ' + age + ' years old.';
6 console.log(message); // Hello, Mohamed! You are 30 years old.
7

8 // New way
9 let message = `Hello, ${name}! You are ${age} years old.`;

10 console.log(message); // Hello, Mohamed! You are 30 years old.

Template literals can span multiple lines without the need for escape characters:

4

Destruction Assignment

1 let message = `This is a
2 multi-line
3 string.`;
4 console.log(message); // This is a
5 // multi-line
6 // string.

5 Destruction Assignment
Destructuring assignment is a feature introduced in ES6 that allows you to extract values from
arrays or objects and assign them to variables in a more concise way.

5.1 Array Destructuring
Array destructuring allows you to extract values from an array and assign them to variables in
a single statement.

1 let numbers = [1, 2, 3, 4, 5];
2

3 [a, b, c, d, e] = numbers;
4 console.log(a, b, c, d, e); // 1 2 3 4 5
5

6 [f, g, h] = numbers;
7 console.log(f, g, h); // 1 2 3

You can also skip elements in the array by leaving empty spaces:

1 let numbers = [1, 2, 3, 4, 5];
2

3 let [a, , c, , e] = numbers;
4

5 console.log(a, c, e); // 1 3 5

You can also use the rest operator ... to capture the remaining elements of an array:

1 let numbers = [1, 2, 3, 4, 5];
2

3 let [a, b, ...rest] = numbers;
4

5 console.log(a, b); // 1 2
6 console.log(rest); // [3, 4, 5]

5.2 Object Destructuring
Object destructuring allows you to extract values from an object and assign them to variables
in a single statement.

1 let person = { name: 'Mohamed', age: 30 };
2

3 let { name, age } = person;
4

5 console.log(name, age); // Mohamed 30

5

Destruction Assignment

You can also use different variable names for the extracted values:

1 let person = { name: 'Mohamed', age: 30 };
2

3 let { name: personName, age: personAge } = person;
4

5 console.log(personName, personAge); // Mohamed 30

You can also provide default values for the variables:

1 let person = { name: 'Mohamed' };
2

3 let { name, age = 30 } = person;
4

5 console.log(name, age); // Mohamed 30

Lets try a more complex example:

1 let person = {
2 name: 'Mohamed',
3 age: 30,
4 address: {
5 country: 'USA',
6 city: {
7 name: 'New York',
8 zip: 10001,
9 }

10 }
11 };
12

13 let {
14 name,
15 age,
16 address: {
17 country,
18 city: { name: cityName, zip },
19 },
20 } = person;
21

22 console.log(name, age, country, cityName, zip); // Mohamed 30 USA New York
10001↪→

You can also combine both dot notation and object destructuring:

1 let person = {
2 name: 'Mohamed',
3 age: 30,
4 address: { country: 'USA', city: { name: 'New York', zip: 10001 } },
5 };
6

7 let { zip } = person.address.city;
8

9 console.log(zip); // 10001

6

this Keyword

6 this Keyword
The this keyword in JavaScript refers to the object it belongs to. It has different values
depending on where it is used:

• In a method, this refers to the owner object.
• Alone, this refers to the global object. In a browser, it refers to the window object.
• In a function, this refers to the global object too.
• In a function, in strict mode, this is undefined.
• In an event, this refers to the element that received the event. For example, e.target is

equivalent to this.target.
• In an object, this refers to the object itself.

In JavaScript, this always refers to the “owner” of the function we’re executing, or rather, to
the object that a function is a method of.

1 let person = {
2 firstName: 'Mohamed',
3 lastName: 'Ahmed',
4 fullName: function() {
5 return this.firstName + ' ' + this.lastName;
6 }
7 };
8

9 console.log(person.fullName()); // Mohamed Ahmed

In the example above, this refers to the person object because the fullName function is a
method of the person object.

If you were to call the fullName function without the person object:

1 let person = {
2 firstName: 'Mohamed',
3 lastName: 'Ahmed',
4 fullName: function() {
5 return this.firstName + ' ' + this.lastName;
6 }
7 };
8

9 let fullName = person.fullName;
10 console.log(fullName()); // TypeError: Cannot read properties of undefined

(reading 'firstName')↪→

In this case, this refers to the global object because the fullName function is not a method of
the person object. Since the global object does not have firstName and lastName properties,
it throws an error.

6.1 this In A Function Inside An Object Method
When strict mode is not used, if we use this in a function inside an object method, it will
refer to the global object.

7

Arrow Functions

1 let obj = {
2 getThis: function () {
3 let innerFunc = function () {
4 console.log(this);
5 };
6 innerFunc();
7 },
8 };
9

10 obj.getThis(); // window

And if we "use strict", this will be undefined.

People used to solve this problem by using a variable to store the value of this before entering
the function.

1 let obj = {
2 that: this,
3 getThis: function () {
4 let that = this;
5 let innerFunc = function () {
6 console.log(that);
7 };
8 innerFunc();
9 },

10 };
11

12 obj.getThis(); // The object itself

7 Arrow Functions
Arrow functions are a new way to write functions introduced in ES6. They provide a more
concise syntax for writing functions compared to traditional function expressions.

Arrow functions have the following syntax:

1 let add = (a, b) => a + b;

This is equivalent to the following traditional function expression:

1 let add = function(a, b) {
2 return a + b;
3 };

Arrow functions have the following features:

• They have a more concise syntax compared to traditional function expressions.
• They do not have their own this. They inherit these from the surrounding code.

Here are some examples of arrow functions:

1 // Single parameter
2 let square = x => x * x;
3

4 // Multiple parameters

8

Set

5 let add = (a, b) => a + b;
6

7 // No parameters
8 let greet = () => 'Hello, World!';
9

10 // Multiple statements
11 let sum = (a, b) => {
12 let result = a + b;
13 return result;
14 };

Some Notes:

• With single parameter you can ignore the parentheses of the parameter.
• With one statement you can ignore the curly braces and the return keyword.
• With no parameters you can use empty parentheses.
• With multiple statements you need to use curly braces and the return keyword.
• With multiple parameters you need to use parentheses.

7.1 this & Arrow Functions
We mentioned earlier that arrow functions do not have their own this, they inherit this from
the surrounding code.

This will help us solve the problem mentioned earlier in the section about this in a function
inside an object method.

1 let obj = {
2 getThis: function () {
3 let innerFunc = () => {
4 console.log(this);
5 };
6 innerFunc();
7 },
8 };
9

10 obj.getThis(); // The object itself

Now we don’t need to use a variable to store the value of this before entering the function.

8 Set
Set was introduced in ES6. A Set is a collection of unique values. It is similar to an array,
but it does not allow duplicate elements.

You can create a Set by passing an array of values to the Set constructor:

1 let set = new Set([1, 2, 3, 4, 5, 1, 2, 3]); // Duplicate values are
removed↪→

2

3 console.log(set); // Set(5) { 1, 2, 3, 4, 5 }

9

Set

8.1 Set & Array
You can convert a Set to an array using the Array.from method:

1 let set = new Set([1, 2, 3]);
2

3 let arr = Array.from(set);
4

5 console.log(arr); // [1, 2, 3]

You can also convert an array to a Set using the Set constructor:

1 let arr = [1, 2, 3, 4, 5, 1, 2, 3];
2

3 let set = new Set(arr);
4

5 console.log(set); // Set(5) { 1, 2, 3, 4, 5 }

8.2 Set Methods
8.2.1 add

You can add values to a Set using the add method:

1 let set = new Set();
2

3 set.add(1);
4 set.add(2);
5 set.add(3);
6

7 // Or you can chain the add method
8 set.add(1).add(2).add(3);
9

10 console.log(set); // Set(3) { 1, 2, 3 }

8.2.2 size

You can get the number of elements in a Set using the size property:

1 let set = new Set([1, 2, 3]);
2

3 console.log(set.size); // 3

8.2.3 has

You can check if a Set contains a value using the has method:

1 let set = new Set([1, 2, 3]);
2

3 console.log(set.has(1)); // true
4 console.log(set.has(4)); // false

8.2.4 delete

You can remove values from a Set using the delete method:

10

Map

1 let set = new Set([1, 2, 3]);
2

3 set.delete(2);
4

5 console.log(set); // Set(2) { 1, 3 }

9 Map
Map was introduced in ES6. A Map is a collection of key-value pairs. It is similar to an object,
but it has some key differences:

• The keys in a Map can be of any type, while the keys in an object are always strings.
• The keys in a Map preserve the order in which they were inserted, while the keys in an

object do not.
• The size of a Map can be easily determined using the size property.
• You can easily iterate over the keys and values in a Map.
• You can remove an entry from a Map using the delete method.

Similar to Set, you can create a Map by passing an array of key-value pairs to the Map constructor:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map); // Map(2) { 'name' => 'Mohamed', 'age' => 30 }

9.1 Map & Object
You can convert an object to a Map using the Map constructor and the Object.entries method:

1 let obj = { name: 'Mohamed', age: 30 };
2

3 let map = new Map(Object.entries(obj));
4

5 console.log(map); // Map(2) { 'name' => 'Mohamed', 'age' => 30 }

You can also convert a Map to an object using the Object.fromEntries method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 let obj = Object.fromEntries(map);
7

8 console.log(obj); // { name: 'Mohamed', age: 30 }

11

Map

9.2 Map Methods
9.2.1 set

You can add key-value pairs to a Map using the set method:

1 let map = new Map();
2

3 map.set('name', 'Mohamed');
4 map.set('age', 30);
5

6 // Or you can chain the set method
7 map.set('name', 'Mohamed').set('age', 30);
8

9 console.log(map); // Map(2) { 'name' => 'Mohamed', 'age' => 30 }

9.2.2 size

You can get the number of key-value pairs in a Map using the size property:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map.size); // 2

9.2.3 keys & values

You can get the keys and values of a Map using the keys and values methods:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map.keys()); // MapIterator { 'name', 'age' }
7 console.log(map.values()); // MapIterator { 'Mohamed', 30 }

9.2.4 has

You can check if a Map contains a key using the has method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 console.log(map.has('name')); // true
7 console.log(map.has('gender')); // false

9.2.5 delete

You can remove key-value pairs from a Map using the delete method:

12

Map

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 map.delete('age');
7

8 console.log(map); // Map(1) { 'name' => 'Mohamed' }

9.2.6 clear

You can remove all key-value pairs from a Map using the clear method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 map.clear();
7

8 console.log(map); // Map(0) {size: 0}

9.2.7 entries

You can get the key-value pairs of a Map using the entries method:

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6

7 console.log(map.entries()); // MapIterator {'name' => 'Mohamed', 'age' =>
30}↪→

9.3 Map Iteration
You can iterate over the key-value pairs of a Map using the for...of method:

9.3.1 Iterating Over Entries

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6

7 for (const entry of map) {
8 console.log(entry);
9 }

13

Map

9.3.2 Iterating Over Keys

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 for (const key of map.keys()) {
7 console.log(key);
8 }

9.3.3 Iterating Over Values

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 for (const value of map.values()) {
7 console.log(value);
8 }

9.3.4 Iterating With Destructuring

1 let map = new Map([
2 ['name', 'Mohamed'],
3 ['age', 30],
4]);
5

6 for (const [key, value] of map) {
7 console.log(key, value);
8 }

14

Summary

10 Summary
In this session, we covered the following topics:

• "use strict" which is a way to use a restricted variant of JavaScript that would catch
common coding problems and throw exceptions.

• let and const which are new ways to declare variables in ES6.
• Default parameter values which allow you to specify a default value for a parameter in a

function if no argument is provided.
• Template literals which are a new way to create strings in ES6.
• Destructuring assignment which allows you to extract values from arrays or objects and

assign them to variables in a more concise way.
• Arrow functions which are a new way to write functions in ES6.
• this keyword which refers to the object it belongs to.
• Set which is a collection of unique values.
• Map which is a collection of key-value pairs.

15

Session 25

Mohamed Emary

July 1, 2024

1 Spread Operator
Spread operator is a new feature in ES6 that allows you to expand an iterable like an array or
an object into individual elements. It is denoted by three dots ... and can be used in a variety
of ways.

1.1 Spread in Arrays
The spread operator can be used to expand an array into individual elements. This is useful
when you want to pass the elements of an array as arguments to a function.

1 function sum (a, b, c) {
2 return a + b + c;
3 }
4 const numbers = [1, 2, 3];
5 console.log(sum(...numbers)); // 6

In this example if you didn’t use the spread op-
erator and passed the array directly to the sum
function, the values of a, b, c would be a =
[1, 2, 3], b = undefined, c = undefined.

You can also use the spread operator to combine arrays.

1 const numbers1 = [1, 2, 3];
2 const numbers2 = [4, 5, 6];
3 const combined = [...numbers1, ...numbers2];
4 console.log(combined); // [1, 2, 3, 4, 5, 6]

1.2 Spread in Objects
The spread operator can also be used to copy the properties of an object into a new object.

1 const obj1 = {
2 name: 'Mohamed',
3 age: 30
4 };
5 const obj2 = {
6 city: 'Cairo',

1

Shallow Copy vs Deep Copy

7 country: 'Egypt'
8 };
9

10 const combined = { ...obj1, ...obj2 };
11 console.log(combined); // { name: 'Mohamed', age: 30, city: 'Cairo',

country: 'Egypt' }↪→

1.3 Rest Parameter
The spread operator can also be used to collect multiple arguments into an array. This is called
the rest parameter.

1 function sum (...numbers) {
2 let total = 0;
3 for (let number of numbers) {
4 total += number;
5 }
6 return total;
7 }
8

9 let numbers = [1, 2, 3, 4, 5];
10 console.log(sum(...numbers)); // 15

2 Shallow Copy vs Deep Copy
To understand the difference between shallow copy and deep copy, let’s first understand how
JavaScript stores values in memory.

JavaScript uses two data structures to store values: the stack and the heap.

• The stack is used to store primitive values like numbers, strings, and booleans.
• The heap is used to store non-primitive values like objects, arrays, and functions.

When you assign a primitive value to a variable, the variable stores the actual value. When
you assign a non-primitive value to a variable, the variable stores a reference to the value.

This image shows the difference between the stack and the heap:

Figure 1: Stack & Heap

2

Shallow Copy vs Deep Copy

Notice that the primitive value name is stored directly in the stack, while other non-primitive
values like employee, newEmployee objects, and getName function are stored in the heap and
the stack stores a reference to them.

Also notice that since the statement const newEmployee = employee; is a shallow copy, both
employee and newEmployee point to the same memory location in the heap.

2.1 Shallow Copy
A shallow copy creates a new object that has just a reference to the values of the original object.
This means that both objects point to the same memory location and share the same values in
memory. So if you change something in the new object, the original object will also change and
vice versa.

We mean by object here both arrays and objects.

1 let original = { name: "Mohamed", age: 30 };
2 let copied = original;
3

4 copied.age = 31;
5 console.log(original); // { name: "Mohamed", age: 31}
6 console.log(copied); // { name: "Mohamed", age: 31}

2.2 Deep Copy
A deep copy creates a new object that has a new memory location for each value of the original
object. This means that both objects are completely independent of each other. So if you
change something in the new object, the original object will not change.

2.2.1 Rest Parameter in Deep Copy

You can use the rest parameter to create a deep copy of an object. This will create a new object
with a copy of all primitive values.

Consider the following example:

Deep copy:

1 const numbers = [1, 2, 3];
2 const copy = [...numbers];
3 numbers[0] = 100;
4 console.log(copy); // [1, 2, 3]
5 console.log(numbers); // [100, 2,

3]↪→

Shallow copy:

1 const numbers = [1, 2, 3];
2 const copy = numbers;
3 numbers[0] = 100;
4 console.log(copy); // [100, 2, 3]
5 console.log(numbers); // [100, 2,

3]↪→

2.2.2 Non-Primitive Values Inside Non-Primitive Values

If we have a non-primitive value inside another non-primitive value (like another object or an
array), the spread operator will only create a shallow copy of the non-primitive value.

1 const obj1 = { name: "Mohamed", address: { city: "Cairo" } };
2 const obj2 = { ...obj1 };
3

4 // Changing a primitive value

3

Higher-Order Functions

5 obj1.name = "Ali";
6 console.log(obj1); // { name: "Ali", address: { city: "Cairo" } }
7 console.log(obj2); // { name: "Mohamed", address: { city: "Cairo" } }
8

9 // Changing a non-primitive value
10 obj1.address.city = "Alex";
11 console.log(obj1); // { name: "Ali", address: { city: "Alex" } }
12 console.log(obj2); // { name: "Mohamed", address: { city: "Alex" } }

Notice that the primitive value name was a deep copy, while the non-primitive value address
was a shallow copy.

2.2.3 Deep Copy Using JSON.parse and JSON.stringify

To create a deep copy of an object that contains non-primitive values, you can use JSON.parse
and JSON.stringify. This will create a new object with a copy of all values (both primitive
and non-primitive).

This method works by converting the object to a string and then back to an object.

1 const obj1 = { name: "Mohamed", address: { city: "Cairo" } };
2 const obj2 = JSON.parse(JSON.stringify(obj1));
3

4 obj1.address.city = "Alex";
5

6 console.log(obj1); // { name: "Mohamed", address: { city: "Alex" } }
7 console.log(obj2); // { name: "Mohamed", address: { city: "Cairo" } }

2.2.4 Deep Copy Using structuredClone

Another way to create a deep copy of an object is to use the structuredClone method.

1 const obj1 = { name: "Mohamed", address: { city: "Cairo" } };
2 const obj2 = structuredClone(obj1);
3

4 obj1.address.city = "Alex";
5

6 console.log(obj1); // { name: "Mohamed", address: { city: "Alex" } }
7 console.log(obj2); // { name: "Mohamed", address: { city: "Cairo" } }

3 Higher-Order Functions
A higher-order function is a function that takes one or more functions as arguments or returns
a function as its result.

Higher-order functions take anonymous functions or arrow functions as arguments and use them
to perform some operation.

Examples of higher-order functions in JavaScript include:

• forEach

• map

• filter

4

Higher-Order Functions

• reduce

• find

3.1 forEach

The forEach method is used to iterate over an array and execute a function for each element.

1 const numbers = [1, 2, 3, 4, 5];
2

3 // Using anonymous function
4 numbers.forEach(function (number) {
5 console.log(number);
6 });
7

8 // Using arrow function
9 numbers.forEach(number => console.log(number));

The code above is equivalent to the following:

1 for (let number of numbers) {
2 console.log(number);
3 }

Example of getting the sum of an array using forEach:

1 const numbers = [1, 2, 3, 4, 5];
2 let sum = 0;
3

4 numbers.forEach(number => sum += number);
5

6 console.log(sum); // 15

Example using it with getElementsByTagName:

Suppose you have the following HTML:

1
2 Item 1
3 Item 2
4 Item 3
5

You can use querySelectorAll to select all the list items and then use forEach with
addEventListener to add a click event to each item.

1 const items = document.getElementsByTagName('li');
2

3 items.forEach(item => item.addEventListener('click', () => {
4 console.log(item.textContent);
5 }));

If we use another parameter with item in the arrow function, it will be the index of the item in
the array (item, index) =>

5

Higher-Order Functions

Note:
The forEach works with NodeLists but not with HTMLCollections. If you want to use
forEach with getElementsByTagName, you need to convert the HTMLCollection to an
array first or just use querySelectorAll instead.

3.2 map

The map method is used to create a new array by applying a function to each element of an
existing array. The new array will have the same length as the original array.

1 let numbers = [1, 2, 3, 4, 5];
2 let doubled = numbers.map(number => number * 2);
3 console.log(doubled); // [2, 4, 6, 8, 10]

Notice that the original array numbers has not been modified.

Another Example with objects:

1 let products = [
2 { name: 'iPhone', price: 1000 },
3 { name: 'iPad', price: 500 },
4 { name: 'MacBook', price: 2000 }
5];
6

7 let prices = products.map(product => {
8 return `${product.name} Price is $${product.price}`;
9 });

10

11 console.log(prices); // ["iPhone Price is $1000",]

3.3 filter

The filter method is used to create a new array with all elements that pass the test implemented
by the provided function.

1 let numbers = [1, 2, 3, 4, 5];
2 let even = numbers.filter(number => number % 2 === 0);
3 console.log(even); // [2, 4]

3.4 reduce

The reduce method is used to reduce an array to a single value. It executes a reducer function
on each element of the array, resulting in a single output value.

The reducer function takes four arguments:

1. Accumulator
2. Current Value
3. Current Index
4. Source Array

6

Prototype

1 let numbers = [1, 2, 3, 4, 5];
2 let sum = numbers.reduce((acc, curr) => acc + curr, 0);
3 console.log(sum); // 15

Notice that the reduce method takes an initial value as the second argument. In this case, the
initial value is 0, if you don’t provide an initial value, the first element of the array will be used
as the initial value.

The reducer function which is (acc, curr) => acc + curr takes two arguments: acc which
is the accumulator and curr which is the current value.

3.5 find

The find method is used to return the first element in an array that satisfies a provided function.
It returns undefined if no element satisfies the function.

It’s similar to the filter method, but the difference is that filter returns an array of all
elements that satisfy the function, while find returns only the first element that satisfies the
function.

1 let words = ['apple', 'banana', 'cherry'];
2 let found = words.find(word => word.length > 5);
3 console.log(found); // 'banana'

4 Prototype
When you log an object in JavaScript, you may have noticed a property you didn’t create called
[[Prototype]]. This property is related to JavaScript’s prototype-based inheritance system.

1. Every object in JavaScript has an internal property called [[Prototype]].
2. This property is a reference to another object, which is the prototype of the current object.
3. The prototype object is used in the prototype chain, which is a mechanism for implementing

inheritance in JavaScript.
4. When you try to access a property or method on an object, JavaScript first looks for it

on the object itself. If it’s not found, it looks up the prototype chain until it finds the
property or reaches the end of the chain (usually Object.prototype).

1. So if there is a property with the same name in the object and its prototype, the
object’s property will be used.

For example:

1 let obj = {};
2 console.log(obj);

Figure 2: Prototype Object

The [[Prototype]] you see here is actually pointing to Object.prototype, which is the base
prototype for all JavaScript objects.

7

Prototype

4.1 Prototypal Inheritance
Suppose you have the following objects:

1 let person = {
2 name: 'Mohamed',
3 age: 30
4 };
5

6 let employee = {
7 salary: 1000
8 };

If you want to make employee inherit the properties of person, you can set the prototype of
employee to person using the Object.setPrototypeOf method.

Syntax of Object.setPrototypeOf: Object.setPrototypeOf(object, prototype)

1 Object.setPrototypeOf(employee, person);

Now, employee will have access to the properties of person.

1 console.log(employee.name); // 'Mohamed'
2 console.log(employee.age); // 30
3 console.log(employee.salary); // 1000
4

5 console.log(employee);

Figure 3: Inheritance Example

Important Notes:

When using Object.setPrototypeOf, you can only set one prototype for an object, and
if you set another prototype, it will override the previous one.

You can make a chain of prototypes by setting the prototype of an object to another
object that has a prototype. The resulting object will have the properties of all the
prototypes in the chain.

1 let person = { name: "Mohamed" };
2 let employee = { salary: 1000 };
3 let manager = { department: "IT" };
4

5 Object.setPrototypeOf(employee, person);
6 Object.setPrototypeOf(manager, employee);

8

Prototype

7 console.log(manager.name); // Mohamed
8 console.log(manager.salary); // 1000
9 console.log(manager.department); // IT

Another important thing to note is that you can’t set two objects as prototypes for each
other because it will create a circular reference.

1 let person = { name: 'Mohamed' };
2 let employee = { salary: 1000 };
3

4 Object.setPrototypeOf(employee, person);
5 Object.setPrototypeOf(person, employee);

Figure 4: Circular Refference Error

4.2 Object

When you create an array in JavaScript, it inherits from [[Prototype]] by default.

The [[Prototype]] gives the array access to all the methods and properties of the Array
object.

You can override the prototype of an array object making functions like push, pop, etc. unavail-
able.

1 let arr = [];
2 let obj = {};
3

4 object.setPrototypeOf(arr, obj);
5 arr.push(1); // TypeError: arr.push is not a function

Figure 5: Array Prototype

The same happens with strings, numbers, and booleans. They all have a prototype that gives
them access to methods and properties.

9

Summary

5 Summary
• The spread operator ... is used to expand an iterable like an array or an object into

individual elements.
• The spread operator can be used to pass the elements of an array as arguments to a

function or to combine arrays.
• The spread operator can also be used to copy the properties of an object into a new object.
• The rest parameter is used to collect multiple arguments into an array.
• A shallow copy creates a new object that has just a reference to the values of the original

object, while a deep copy creates a new object with a new memory location for each value
of the original object.

• You can use JSON.parse and JSON.stringify to create a deep copy of an object that
contains non-primitive values.

• You can use the structuredClone method to create a deep copy of an object.
• Higher-order functions are functions that take one or more functions as arguments or

return a function as their result.
• Examples of higher-order functions in JavaScript include forEach, map, filter, reduce,

and find.
◦ The forEach method is used to iterate over an array and execute a function for each

element.
◦ The map method is used to create a new array by applying a function to each element

of an existing array.
◦ The filter method is used to create a new array with all elements that pass the

test implemented by the provided function.
◦ The reduce method is used to reduce an array to a single value.
◦ The find method is used to return the first element in an array that satisfies a

provided function.
• Every object in JavaScript has an internal property called [[Prototype]], which is a

reference to another object that is the prototype of the current object.
• The prototype object is used in the prototype chain, which is a mechanism for implementing

inheritance in JavaScript.
• You can use Object.setPrototypeOf to set the prototype of an object to another object.
• You can create a chain of prototypes by setting the prototype of an object to another

object that has a prototype.
• You can’t set two objects as prototypes for each other because it will create a circular

reference.
• When you create an array in JavaScript, it inherits from [[Prototype]] by default, giving

it access to all the methods and properties of the Array object.

10

Session 26

Mohamed Emary

July 4, 2024

1 Revision

1.1 Higher Order Functions
Suppose I have a collection of products:

1. To get the total cost of all products we can use the reduce function.
2. To get products with a price greater than 1000 we can use the filter function.
3. To get the first product with a price greater than 1000 we can use the find function.
4. To add 10% tax to all products we can use the map function.

Collection of Products

reduceGet total cost

filterPrice > 1000

find

First item with Price > 1000

map

Add 10% tax

Figure 1: Higher Order Functions

1.2 Prototype
Objects in JS inherit properties from other objects. This is called prototypal inheritance. Every
object has a prototype object, which acts as a template object that it inherits methods and
properties from.

1

Object Oriented Programming (OOP)

The prototype object can either be another object or null. If it is null, the object has no
prototype and therefore does not inherit any properties or methods.

Array object inherits from Array.prototype and Array.prototype inherits from
Object.prototype which is the root object and its prototype is null.

Object Prototype
Inherits

Figure 2: Prototype

The same with numbers, strings, and booleans.

2 Object Oriented Programming (OOP)
OOP is a programming paradigm based on objects. It makes your code more organized, easier
to read, and maintain.

The most important advantage of OOP is that it simulates the real world. It allows you to
break down your software into smaller parts, making it easier to solve complex problems.

For example to model a hospital management system, you can create classes for Doctor, Patient,
Nurse, Receptionist, etc.

There are two main ways to implement OOP:

• Class based OOP (Most Programming Languages): In this paradigm, we use classes to
define objects. A class is a blueprint for creating objects. An object is an instance of a
class.

• Prototype based OOP (Used in JS): In this paradigm, we use prototypes to define
objects. A prototype is a template object that an object inherits properties and methods
from.

2.1 Class based OOP
In class based OOP, we create classes for the important entities in our application, and then we
create objects from these classes.

For example, to model the hospital management system, we can create a class for Doctor and
then create an object for each doctor, same with Patient, Nurse, etc.

Each doctor should have a name, age, and salary. We can define these properties in the Doctor
class.

2.2 Prototype based OOP
Consider this function:

1 function Doctor(name, age, salary) {
2 let doctor = {};

2

Object Oriented Programming (OOP)

3 doctor.name = name;
4 doctor.age = age;
5 doctor.salary = salary;
6 return doctor;
7 }
8 let drAhmed = Doctor('Ahmed', 30, 5000);

In this example, Doctor is a function that creates a doctor object.

2.2.1 Constructor Functions

In JS, we use constructor functions to create objects. A constructor function is like a blueprint
for creating objects.

1 function Doctor(name, age, salary) {
2 this.name = name;
3 this.age = age;
4 this.salary = salary;
5 }
6 let drAhmed = new Doctor('Ahmed', 30, 5000);

This is the same as the previous example, but we use the new operator to create the object, and
this to refer to the object being created.

To create functions that are shared between all objects created from a constructor function, we
use the prototype property.

1 function Doctor(name, age, salary) {
2 this.name = name;
3 this.age = age;
4 this.salary = salary;
5 }
6

7 Doctor.prototype.sayHi = function() {
8 console.log('Hi, I am ' + this.name);
9 };

10

11 Doctor.prototype.getSalary = function() {
12 console.log('My salary is ' + this.salary);
13 };
14

15 let drAhmed = new Doctor('Ahmed', 30, 5000);
16 let drAli = new Doctor('Ali', 35, 6000);
17

18 drAhmed.sayHi(); // Hi, I am Ahmed
19 drAli.sayHi(); // Hi, I am Ali

But why not to just add the functions directly to the object like what we did with
the properties?

• Because if we have many objects, each object will have its own copy of the function which
is a waste of memory.

• With properties it’s fine because each object has its own values for the properties, for exam-
ple the name is different for each object, but with functions it’s the same implementation

3

Main OOP Concepts

for all objects, so no need to have a copy for each object.

2.2.2 Sugar Syntax

In ES6, we have a sugar syntax for creating classes, but under the hood, it’s the same as the
constructor functions.

1 class Doctor {
2 constructor(name, age, salary) {
3 this.name = name;
4 this.age = age;
5 this.salary = salary;
6 }
7

8 sayHi() {
9 console.log('Hi, I am ' + this.name);

10 }
11

12 getSalary() {
13 console.log('My salary is ' + this.salary);
14 }
15 }
16

17 let drAhmed = new Doctor('Ahmed', 30, 5000);
18 let drAli = new Doctor('Ali', 35, 6000);
19

20 drAhmed.sayHi(); // Hi, I am Ahmed
21 drAli.sayHi(); // Hi, I am Ali

This is the same as the previous example, but with a different syntax.

Important things to notice:

• The constructor function is called constructor in the class.
• We don’t use the function keyword before the functions.
• If we want to use arrow functions, we can use for example sayHi = () => { ... }.
• When creating an object from a class, we use the new keyword.
• The first thing to get executed when creating an object from a class is the constructor.

3 Main OOP Concepts

3.1 Inheritance
Inheritance is a mechanism that allows you to eliminate redundant code by reusing existing
classes. It allows you to create a new class that is based on an existing class.

For example, we can create a class for Employee and then create a class for Doctor that inherits
from Employee.

1 class Employee {
2 constructor(name, age) {
3 this.name = name;

4

Main OOP Concepts

4 this.age = age;
5 }
6

7 sayHi() {
8 console.log('Hi, I am ' + this.name);
9 }

10 }
11

12 class Doctor extends Employee {
13 constructor(name, a ge, salary) {
14 super(name, age);
15 this.salary = salary;
16 }
17

18 getSalary() {
19 console.log('My salary is ' + this.salary);
20 }
21 }
22

23 let drAhmed = new Doctor('Ahmed', 30, 5000);
24 drAhmed.sayHi(); // Hi, I am Ahmed
25 drAhmed.getSalary(); // My salary is 5000

In this example, Doctor inherits from Employee. The Doctor class has access to the sayHi
function from the Employee class.

Notice that Doctor has its own constructor function, but it calls the Employee constructor
function using super.

If you log the drAhmed object, you will see that it has all the properties of Employee and Doctor
directly in the object. You will also notice that the prototype of Doctor has both functions
sayHi and getSalary.

Multiple Inheritance

You can’t inherit from multiple classes in JS, however you can make a class inherit from
another class that inherits from another class.

for example if you have Employee and Doctor and you want to create a class Surgeon
that inherits from both, you can make Doctor inherit from Employee and then make
Surgeon inherit from Doctor.
1 class Surgeon extends Doctor, Employee { // Syntax Error

If we have the same variable or function in both the parent and child class, the variable or function
in the child class will override the variable or function in the parent class (Polymorphism).

3.2 Polymorphism
Polymorphism is a feature that allows you to use a single interface to represent different data
types.

For example, we can have a sayHi function in the Employee class and a sayHi function in the
Doctor class. When we call sayHi on a Doctor object, it will call the sayHi function in the

5

Main OOP Concepts

Doctor class, not the one in the Employee class.

1 class Employee {
2 sayHi() {
3 console.log('Hi, I am an employee');
4 }
5 }
6

7 class Doctor extends Employee {
8 sayHi() {
9 console.log('Hi, I am a doctor');

10 }
11 }
12

13 let drAhmed = new Doctor();
14 drAhmed.sayHi(); // Hi, I am a doctor

Polymorphism has two types:

• Overloading: Same function name with different parameters.
• Overriding: Same function name with the same parameters. (In JS we only have

overriding).

3.2.1 Access Modifiers

Access modifiers are keywords that set the accessibility of properties and methods in a class.

• Public: Accessible from anywhere. (Default).
• Private: Not accessible from outside the class. (use # before the property or method

name ex: this.#name).
• Protected: Accessible within the class and its subclasses. (Not available in JS).

1 class Employee {
2 #name; // Private property
3

4 constructor(name, age) {
5 this.#name = name;
6 this.age = age;
7 }
8

9 #sayHi() { // Private method
10 console.log('Hi, I am ' + this.#name);
11 }
12

13 sayHi() {
14 this.#sayHi();
15 }
16 }
17

18 let emp = new Employee('Ahmed', 30);
19 console.log(emp.age); // 30

6

Modules

20 // console.log(emp.#name); // Syntax Error
21 emp.sayHi(); // Hi, I am Ahmed

Notice that we can’t access the private property #name from outside the class.

4 Modules
Modules are a way to split your code into multiple files. Each file is a module that exports some
functions or variables that can be imported in other files.

To use modules in JS, we use the export and import keywords, we also use the type="module"
attribute in the script tag.

To be able to use modules in the browser, you need to use a live server.

1 // variables.js
2 export let name = 'Ahmed';
3 export let age = 30;
4

5 // script.js
6 import { name, age } from './variables.js';
7 console.log(name); // Ahmed
8 console.log(age); // 30

In index.html:

1 <script type="module" src="script.js"></script>

The same can be done with functions and classes, just add export before the function or class,
and import it in the other file.

When exporting multiple things, you can use export { name, age } in the end of the file,
and when importing you can use import * as vars from './variables.js' to import all
the exported things in an object called vars.

1 // info.js
2 let name = 'Ahmed';
3 let age = 30;
4 let sayHi = function() {
5 console.log('Hi, I am ' + name);
6 };
7

8 export { name, age, sayHi };
9

10 // script.js
11 import * as info from './info.js';
12 console.log(info.name); // Ahmed
13 console.log(info.age); // 30
14 info.sayHi(); // Hi, I am Ahmed

We can use export default to export something as the default export, and when importing
we can import it without the curly braces and with any name we want.

1 // info.js
2 let name = 'Ahmed';

7

Modules

3 let age = 30;
4 let sayHi = function() {
5 console.log('Hi, I am ' + name);
6 };
7

8 export { name, age, sayHi };
9 export default sayHi;

10

11 // script.js
12 import greet from './info.js'; // We can use any name to import the

default export↪→

13 greet(); // Hi, I am Ahmed

To import the other exports along with the default export, you can use import greet, {
name, age } from './info.js';. Notice that name, age are in curly braces and have the
same name as the exported variables.

8

Summary

5 Summary
• Higher order functions are functions that take other functions as arguments or return

functions.
• In JS, objects inherit properties and methods from other objects using prototypal inheri-

tance.
• OOP is a programming paradigm based on objects. It simulates the real world and makes

your code more organized.
• There are two main ways to implement OOP: class based OOP and prototype based OOP.
• In class based OOP, we use classes to define objects. A class is a blueprint for creating

objects.
• In prototype based OOP, we use prototypes to define objects. A prototype is a template

object that an object inherits properties and methods from.
• Inheritance is a mechanism that allows you to eliminate redundant code by reusing existing

classes.
• Polymorphism is a feature that allows you to use a single interface to represent different

data types.
• Access modifiers are keywords that set the accessibility of properties and methods in a

class.
• Modules are a way to split your code into multiple files. Each file is a module that exports

some functions or variables that can be imported in other files.
• To use modules in JS, use the export and import keywords, and use the type="module"

attribute in the script tag.
• You can export multiple things using export { name, age } and import them using

import * as vars from './variables.js'.
• You can export something as the default export using export default and import it

without the curly braces and with any name you want.

9

Session 27

Mohamed Emary

July 17, 2024

1 Revision
When you make a class using sugar syntax, you can’t define variables with the let, const,
var keywords outside of the constructor method. You can define them without the keywords,
but they will be treated as properties of the class. You can’t also use function keyword to
define methods.

2 JQuery

2.1 Library vs Framework
• Library: A library is a small piece of code that you can call from your own code, to help

you do things more quickly/easily. For example, a library might include code related to
animation for example. Libraries are usually small and focus on doing one thing and doing
it well. Ex: JQuery, React.

• Framework: A framework is a collection of code that, together, provides a solution to a
problem. Frameworks are usually large and complex. They can include many libraries.
Ex: Angular.

2.2 Why JQuery?
• Simplicity: It makes things like HTML document traversal and manipulation, event

handling, and animation much simpler.
• Write less, do more: It allows you to achieve more things using less code.

JQuery has a lot of methods that allow you to manipulate the DOM, create animations, and
handle events.

2.3 How to use JQuery?
You can use JQuery by including the library in your HTML file. You can download the library
from the JQuery website or use a CDN.

1

How to use JQuery?

At the end of the body tag, you can include the library before your own script.

1 <script src="https://code.jquery.com/jquery-3.7.1.min.js"></script>
2 <script src="script.js"></script>
3 </body>

You can also use CDN or download the library and add it to your project files then include it in
your HTML file.

3 How to use JQuery?
You can use JQuery by selecting elements and applying methods on them.

3.1 Selecting elements
You can select elements using CSS selectors, on the form $('selector').

• Tag name: $('p')

• Class: $('.class-name')

• ID: $('#id-name')

• Attribute: $('input[type="text"]')

Side Note:

You can also use jQuery('selector') instead of $('selector') and it will work the
same way.
This is useful if you are using another library that uses the $ symbol.

3.2 Effects
You can use JQuery to create animations and effects on elements.

Examples:

Conside this HTML code:

1 <div id="my-div" class="bg-info" style="width: 300px; height: 300px"></div>
2 <button class="btn btn-danger">Click</button>

Ex 1:

• To make the div element fade out when you click the button you can use the fadeOut()
method.

1 $('button').click(function() {
2 $('#my-div').fadeOut();
3 });

You can also pass a duration to the fadeOut() method ex: fadeOut(1000).

To hide the element:

1 $('button').click(function() {
2 $('#my-div').hide();
3 });

2

How to use JQuery?

• If the element has a display: none style, the show() method will show it.

1 $('button').click(function() {
2 $('#my-div').show();
3 });

• The toggle() method will show the element if it’s hidden and hide it if it’s shown.

More Functions:

• slideUp(), slideDown(), slideToggle(): Slide an element up, down, or toggle it. These
methods work with the element height.

◦ Toggle means that if the element is hidden, it will show it, and if it’s shown, it will
hide it.

• fadeIn(), fadeOut(), fadeToggle(), fadeTo(): Fade an element in, out, toggle it, or
change its opacity to a specific value ex. fadeTo(1000, 0.5).

3.3 Effects With Callbacks
Consider this HTML code:

1 <div id="demo1" class="bg-info" style="width: 200px; height: 200px"></div>
2 <div id="demo2" class="bg-dark" style="width: 200px; height: 200px"></div>
3 <div id="demo3" class="bg-warning" style="width: 200px; height:

200px"></div>↪→

4

5 <button class="btn btn-danger">Hide All</button>

And this JS code:

1 $('button').click(function() {
2 $('#demo1').hide(1000);
3 $('#demo2').hide(1000);
4 $('#demo3').hide(1000);
5 });

Since the hide() method is asynchronous and non-blocking, the three elements will hide at the
same time.

How to hide them one after the other?

You can use a callback function by passing a function to the hide() method and that function
will be called when the element is hidden.

1 $('#demo1').hide(1000, function() {
2 $('#demo2').hide(1000, function() {
3 $('#demo3').hide(1000);
4 });
5 });

This will hide the elements one after the other.

Notice that if these effects are applied to the same element, they will be executed one after the
other without the need for a callback function.

If you apply multiple effects to the same element, you can use the chaining method.

3

How to use JQuery?

1 $('#demo1').hide(1000).show(1000).fadeOut(1000)
2

3 // Equivalent to
4 $('#demo1').hide(1000);
5 $('#demo1').show(1000);
6 $('#demo1').fadeOut(1000);

3.4 Custom Effects With animate()

You can create custom animations using the animate() method.

Syntax:

1 $('selector').animate({styles}, duration, easing, callback);

Example:

1 $('#demo1').animate({width: '300px'}, 1000);

This will animate the width of the element to 300px in 1 second.

You can have multiple styles in the object passed to the animate() method.

1 $('#demo1').animate({width: '300px', height: '300px', borderRadius: '50%'},
1000);↪→

This will animate the width, height, and border-radius of the element at the same time to the
specified values in 1 second.

To make them animate one after the other, you can just chain the animate() methods.

1 $('#demo1').animate({width: '300px'}, 1000).animate({height: '300px'},
1000).animate({borderRadius: '50%'}, 1000);↪→

2

3

4 // or
5 $('#demo1').animate({width: '300px'}, 1000);
6 $('#demo1').animate({height: '300px'}, 1000);
7 $('#demo1').animate({borderRadius: '50%'}, 1000);

If you have two elements and you want to animate them one after the other, you can use the
callback function.

1 $('#demo1').animate({width: '300px'}, 1000).animate({height: '300px'},
1000, function() {↪→

2 $('#demo2').animate({width: '300px'}, 1000).animate({height: '300px'},
1000);↪→

3 });

This will animate the first element by changing its width then height, then animate the second
element by changing its width then height.

Above example Steps:

First element width T hen−−−→ Its height → Second element width T hen−−−→ Its height

4

DOM Manipulation With JQuery

If you have an element you can even make the element increase its width by 50px from its
current width with each click.

1 $('button').click(function() {
2 $('#demo1').animate({width: '+=50px'}, 1000);
3 });

Important Note

animate() method works with CSS properties that have numeric value only.

To stop animation with a button click, you can use the stop() method.

1 $('button').click(function() {
2 $('#demo1').stop();
3 });

This will stop the animation of the element but other animations will continue.

If you pass true to the stop() method, it will clear the animation queue and stop all animations.

If you stop an animation (even without true as parameter) and this animation calls back
another animation, the callback function will not be executed.

4 DOM Manipulation With JQuery
JQuery allows you to manipulate the DOM easily.

4.1 Get and Set
You can get and set the content, HTML, value, attributes, and CSS properties of elements using
JQuery.

4.1.1 Text Content

To get the content of an element, you can use the text() method.

1 $('selector').text();

You can also pass a string to the text() method to set the content of the element.

1 $('selector').text('New text');

4.1.2 HTML Content

To get the HTML content of an element, you can use the html() method.

1 $('selector').html();

You can also pass a string to the html() method to set the HTML content of the element.

1 $('selector').html('<h1>New content</h1>');

5

DOM Manipulation With JQuery

4.1.3 Input Value

To get the value of an input element, you can use the val() method.

1 $('input').val();

You can also pass a string to the val() method to set the value of the input element.

1 $('input').val('New value');

4.1.4 Attribute

To get the attribute of an element, you can use the attr() method.

1 $('selector').attr('attribute-name');

You can also pass a string to the attr() method to set the attribute of the element.

1 $('selector').attr('attribute-name', 'value');

Example:

1 <input type="text" id="my-input">

1 $('input').attr('type'); // 'text'

4.1.5 CSS

You can get the CSS value of a property of an element using the css() method.

1 $('selector').css('property-name');

You can also pass a string to the css() method to set the CSS property of the element.

1 $('selector').css('property-name', 'value');

Example:

1 $('#demo1').css('background-color'); // 'rgb(255, 0, 0)'
2 $('#demo1').css('color', 'red');
3

4

5 // To set multiple CSS properties
6 $("#demo1").css({
7 width: "100px",
8 height: "100px",
9 borderRadius: "50%",

10 transitionDuration: "1s",
11 });

4.1.6 Width, Height

You can get and set the width and height of an element using the width() and height()
methods.

1 $('selector').width();
2 $('selector').height();

You can also pass a number to the width() and height() methods to set the width and height
of the element.

6

DOM Manipulation With JQuery

1 $('selector').width(100);
2 $('selector').height(100);

You can get the inner width and height of an element using the innerWidth() and
innerHeight() methods.

innerWidth = width + padding

1 $('selector').innerWidth();
2 $('selector').innerHeight();

You can get the outer width and height of an element using the outerWidth() and
outerHeight() methods.

outerWidth = width + padding + border

1 $('selector').outerWidth();
2 $('selector').outerHeight();

You can also pass true to the outerWidth() and outerHeight() methods to include the
margin.

1 $('selector').outerWidth(true);
2 $('selector').outerHeight(true);

4.2 Add and Remove
You can add and remove elements, classes, and attributes using JQuery.

4.2.1 Elements

To add elements, you can use the append(), prepend(), after(), and before() methods.

• append(): Add elements inside the selected element at the end.
• prepend(): Add elements inside the selected element at the beginning.
• after(): Add elements after the selected element.
• before(): Add elements before the selected element.

Example:

Consider this HTML:

1 <div id="my-div"></div>

And in JS:

1 $('#my-div').append('<p>New paragraph</p>'); // Child at the end
2 // <div id="my-div"><p>New paragraph</p></div>
3

4 $('#my-div').prepend('<p>New paragraph</p>'); // Child at the beginning
5 // <div id="my-div"><p>New paragraph</p></div>
6

7 $('#my-div').after('<p>New paragraph</p>'); // Sibling after
8 // <div id="my-div"></div><p>New paragraph</p>
9

7

Traversing

10 $('#my-div').before('<p>New paragraph</p>'); // Sibling before
11 // <p>New paragraph</p><div id="my-div"></div>

You can even move existing element by passing it to the append(), prepend(), after(), and
before() methods.

1 $('#my-div').append($('p')); // Moves the p element inside the div element

To remove elements, you can use the remove() method.

1 $('selector').remove();

This will remove the selected element.

To empty an element, you can use the empty() method.

1 $('selector').empty();

This will remove all the children of the selected element.

4.2.2 Classes

You can add and remove classes using JQuery.

To add a class to an element, you can use the addClass() method.

1 $('selector').addClass('class-name');
2

3 // To add multiple classes
4 $('selector').addClass('class1 class2 class3');

To remove a class from an element, you can use the removeClass() method.

1 $('selector').removeClass('class-name');

To toggle a class on an element, you can use the toggleClass() method.

1 $('selector').toggleClass('class-name');

This will add the class if it’s not there and remove it if it’s there.

4.2.3 Attributes

You can add and remove attributes using JQuery.

To add an attribute to an element, you can use the attr() method.

1 $('selector').attr('attribute-name', 'value');

To remove an attribute from an element, you can use the removeAttr() method.

1 $('selector').removeAttr('attribute-name');

5 Traversing
JQuery allows you to traverse the DOM easily.

• .parent(): The direct parent of the selected element.
• .parents(): All the ancestors of the selected element.

8

Traversing

• .parentsUntil('selector'): All the ancestors of the selected element until a specific
element, and that element is not included.

You can use the methods mentioned before to apply styles, add classes, and remove elements
from the elements you are traversing.

• .children(): The direct children of the selected element.
◦ .children('selector'): The direct children of the selected element that match

the selector.
• .find('selector'): The descendants of the selected element that match the selector.

◦ .find('*'): All the descendants of the selected element.
• .siblings(): The siblings of the selected element.

◦ .siblings('selector'): The siblings of the selected element that match the selec-
tor.

• .next(), .prev(): The next or previous sibling of the selected element.
• .nextAll(), .prevAll(): All the next or previous siblings of the selected element.
• .nextUntil('selector'), .prevUntil('selector'): All the next or previous siblings

of the selected element until a specific element, and that element is not included.
• $('span').not('selector'): Select all span elements that do not match the selector.
• $('span').eq(index): Select the span element at the specified index.
• $('span').first(): Select the first span element.
• $('span').last(): Select the last span element.
• $('span').filter('selector'): Select the span elements that match the selector.

For a nice JQuery cheat sheet, you can visit this link.

9

https://htmlcheatsheet.com/jquery/

Session 28

Mohamed Emary

July 19, 2024

1 Example Website
Watch OSAKA example website videos on google drive.

2 Some Notes
• When you are inside an event function, instead of using e.target we can use this which

will also show the HTML code of the target element.
• To get the distance from the top of a section to the top of the page you can use

$("selector").offset().top.
◦ It also has a left property $("selector").offset().left which gives the distance

from the left side of the page.
• To get the height of an element you can use $("selector").height().
• $("selector").scrollTop() will give you the distance from the top of the page to the

top of the section. $(window).scrollTop(0) can be used in a button click event to scroll
to the top of the page.

1 $('html,body').animate({
2 scrollTop:0
3 },4000)

• The code above will scroll to the top of the page in 4 seconds.
• $(window).scroll() is an event that is triggered when the user scrolls the page.
• $(window).scrollTop() will give you the distance from the top of the page to the top of

the window.
• To do something when the page loads for example hide the spinner you can use

$(window).ready(() => $('#loading).slideUp(1000)).

1

Closure

3 Packge Manager (npm)
npm stands for Node Package Manager. It is used to install packages that are needed for a
project, instead of manually downloading them. It is also used to manage the versions of the
packages.

To have the npm command available in the terminal you need to install Node.js.

To install a package you can use npm install package-name. This will download the package
and save it in a folder called node_modules. It will also create a file called package.json which
will contain the name of each package and its version.

To install a specific version of a package you can use npm install package-name@version.

After installing the packages you can link them to your project.

4 Closure
In JavaScript, a closure is a function that has access to its own scope and the scope of its
parent functions, even when the parent functions have returned. This allows the function to
“remember” and use variables from its parent scope, even when it’s called outside of that scope.

1 function outer() {
2 let x = 10;
3 let y = 20;
4 let z = 30;
5

6 function inner() {
7 console.log(x, y);
8 }
9

10 return inner;
11 }
12

13 const innerFunc = outer();
14 innerFunc(); // logs 10

If you want to see closure in the console you can use console.dir(innerFunc).

Figure 1: Closure in console

Notice that it has only access to the variables x and y and not z because it is not used in the
inner function.

2

https://nodejs.org/en/

Session 29

Mohamed Emary

July 30, 2024

1 NPM Continued
When we upload our project to a server, we use a bundler to bundle all HTML files into one file,
all CSS files into one file, and all JS files into one file. This is done to reduce the number of
requests made to the server. Example bundler is Webpack.

Some libraries and files are used only while developing the project and are not used in the
production environment.

Example files include .ts files, .scss since browsers understand .css not .scss, and .js not
.ts.

These libraries are called devDependencies. They are not included in the production en-
vironment. When installing these libraries via npm, we use the -D flag to install them as
devDependencies. Example npm i -D tailwindcss.

2 Tailwind CSS
Tailwind CSS is a utility-first CSS framework. It was introduced in 2017. Tailwind allows us to
build custom designs without the need to write any CSS. With tailwind you are not limited to
the set of predefined classes by the framework. You can create your own custom classes.

Tailwind also has a paid version called Tailwind UI. Tailwind UI provides pre-built components
that can be used in your project.

In the last couple of years, Tailwind has more gained popularity than Bootstrap as you can see
here in npm trends:

1

https://www.npmtrends.com/bootstrap-vs-tailwindcss

Tailwind CSS

Figure 1: Tailwind vs Bootstrap

One of the best things about Tailwind is that it has better performance than other CSS
frameworks like Bootstrap. Tailwind only includes the CSS that is used in the project. This
reduces the size of the CSS file. (This is also the reason why using tailwind via CDN is not the
best option for production environment as it includes all the CSS classes).

Tailwind has an input.css file that includes all the classes. This file is then processed to
generate the final output.css file. This final CSS file is then included in the project.

In browser you can see the performance of your site in light house tab.

As mentioned in documentation, To install Tailwind via CLI:

1. We run npm i -D tailwindcss

2. Run npx tailwindcss init to create a tailwind.config.js file.
3. Add content: ["./src/**/*.{html,js}"], to the tailwind.config.js file.
4. Create a dir src and add an input.css file.
5. Add the following code to the input.css file:

1 @tailwind base;
2 @tailwind components;
3 @tailwind utilities;

6. Run npx tailwindcss -i ./src/input.css -o ./dist/output.css --watch

7. Link your HTML file with output.css file.

Some Notes:

1. After running npx tailwindcss -i ./src/input.css -o ./dist/output.css
--watch you will notice that the file output.css has some CSS code, this code
represents the @tailwind base; which is used for CSS normalization.

2. The --watch flag is used to watch for changes in the files in content array in
tailwind.config.js file. If any changes are made, the output.css file is updated
automatically. So for example, if you add a new class in the index.html file, the
output.css file will have the new class added automatically. It also saves you time from
running the command again and again.

2

https://tailwindcss.com/docs/installation

Tailwind Colors

3. The content: ["./src/**/*.{html,js}"] means that Tailwind will look for classes in
all the HTML and JS files in the src directory.

1. * matches any thing except slashes and hidden files.
2. ** matches zero or more directories.
3. The ./src/**/*.{html,js} is a content pattern that you should be specific about.

If you are not specific, you might end up with a lot of classes that are not used in
your project.

3 Tailwind Colors
Tailwind has a large set of colors that can be used in your project. You can find the list of
colors in the documentation.

You can also create your own custom colors to use with the background for example, by using
bg-[customColor] for example bg-[#ff0000]. This doesn’t only apply to background colors,
you can also use it for text colors, border colors, etc.

The class bg-[#ff0000] is translated in the output.css file to:

1 .bg-\[\#ff0000\] {
2 --tw-bg-opacity: 1;
3 background-color: rgb(255 0 0 / var(--tw-bg-opacity));
4 }

You can also define the colors in the tailwind.config.js file. For example:

1 module.exports = {
2 theme: {
3 colors: {
4 'blue': '#1fb6ff',
5 'purple': '#7e5bef',
6 'pink': '#ff49db',
7 'orange': '#ff7849',
8 'green': '#13ce66',
9 'yellow': '#ffc82c',

10 'gray-dark': '#273444',
11 'gray': '#8492a6',
12 'gray-light': '#d3dce6',
13 },
14 }
15 }

That will override the default colors in Tailwind. So now you can use bg-blue, bg-purple, etc,
but you can’t use the default colors like bg-red-300, bg-green-400, etc.

So to have those custom colors in addition to the default colors, you can add them to the extend
object:

1 module.exports = {
2 theme: {
3 extend: {
4 colors: {
5 'blue': '#1fb6ff',

3

https://tailwindcss.com/docs/customizing-colors

Tailwind Spacing

6 'purple': '#7e5bef',
7 'pink': '#ff49db',
8 'orange': '#ff7849',
9 'green': '#13ce66',

10 'yellow': '#ffc82c',
11 'gray-dark': '#273444',
12 'gray': '#8492a6',
13 'gray-light': '#d3dce6',
14 },
15 },
16 }
17 }

Now you can use both the default colors and the custom colors.

4 Tailwind Spacing
If you don’t You can define custom spacing using p-[customSpacing] for padding,
m-[customSpacing] for margin, w-[customSpacing] for width, h-[customSpacing] for
height, etc. For example, p-[40rem] will add a padding of 40rem.

This p-[40rem] class is translated in the output.css file to:

1 .p-\[40rem\] {
2 padding: 40rem;
3 }

You can also define that custom spacing in thetailwind.config.js file:

1 module.exports = {
2 theme: {
3 extend: {
4 spacing: {
5 '100': '100px',
6 },
7 },
8 }
9 }

Now you can use p-100, mt-100, mb-100, ml-100, mr-100, etc.

That p-100 class is translated in the output.css file to:

1 .p-100 {
2 padding: 100px;
3 }

Notice that adding spacing in the theme object will override the default spacing in Tailwind.

4.1 Spacing Between Elements
• space-x-Number is used to add spacing between elements in the x-axis. It can be used

with flexbox classes like flex-row.

4

Tailwind Spacing

• space-y-Number is used to add spacing between elements in the y-axis. It can be used
with flexbox classes like flex-col.

• space-x-reverse should be used if you have flex-row-reverse or flex-col-reverse
to reverse the spacing in the x-axis.

The space classes start applying spaces from the second element, that is because they have the
selector space-x-.... > * + * which means apply the margin to the second element and the
rest of the elements.

4.2 Width and Height
4.2.1 Width

• w-WIDTH is used to set the width of an element. For example, w-[100px] will set the
width to 100px.

• w-1/2 is used to set the width to 50%.
• w-1/3 is used to set the width to 33.333333%. and so on.

There are many default width and height classes you can check in the documentation.

4.2.2 Height

• h-HEIGHT is used to set the height of an element. For example, h-[100px] will set the
height to 100px.

• h-1/2 is used to set the height to 50%.
• h-1/3 is used to set the height to 33.333333%. and so on.

There are many default width and height classes you can check in the documentation.

4.3 Size
• size-SIZE is used to set the width and height of an element. For example, size-[100px]

will set the width and height to 100px.
• size-1/2 is used to set the width and height to 50%.
• size-1/3 is used to set the width and height to 33.333333%. and so on.

4.4 Hover, Focus, and Active
• hover:bg-COLOR is used to change the background color of an element when hovered.

◦ You can also specify the duration of the hover effect by using duration-TIME

◦ You can also add delay to the hover effect by using delay-TIME

• focus:bg-COLOR is used to change the background color of an element when focused.

4.5 Valid and Invalid
Those two classes are used to style input fields based on whether the input is valid or invalid.

• valid:bg-green-100 is used to style the input field when the input is valid.
• invalid:bg-red-100 is used to style the input field when the input is invalid.

5

https://tailwindcss.com/docs/width
https://tailwindcss.com/docs/height

Tailwind Spacing

4.6 Required & Disabled
• required:bg-red-100 is used to style the input field when it is required.
• disabled:bg-gray-100 is used to style the input field when it is disabled.

4.7 First & Last Child
• first:bg-COLOR is used to give a background to the first child of an element.
• last:bg-COLOR is used to give a background to the last child of an element.

4.8 Even & Odd
• even:bg-COLOR is used to give a background to the even children of an element.
• odd:bg-COLOR is used to give a background to the odd children of an element.

4.9 Hovering on Parent Affected Child
• group is used to group the parent and the child elements.
• group-hover:bg-COLOR is used to change the background color of the child element when

the parent element is hovered.

1 <div class="group p-4 bg-red-400">
2 <div class="bg-green-300 group-hover:bg-yellow-300">Child</div>
3 </div>

4.10 Peer
• peer is used to style the sibling elements.
• peer-hover:bg-COLOR is used to change the background color of the sibling element when

hovered.

1 <div class="peer bg-red-400">Sibling 1</div>
2 <div class="peer-hover:bg-green-300">Sibling 2</div>

Here if you hover on the first sibling, the second sibling will change its background color.

4.11 Container
This part is important for responsive design. Better to read it in the documentation.

4.12 Background
See the Background part in documentation

6

https://tailwindcss.com/docs/container
https://tailwindcss.com/docs/background-color

Session 30

Mohamed Emary

August 3, 2024

1 CSS Layers
Layers is a new CSS concept that was introduced in 2022. It is used to declare a cascade layer
and can also be used to define the order of precedence in case of multiple cascade layers.

We can define a layer by using the @layer directive. The @layer directive can be used to define
a layer at the top of the CSS file. We can define multiple layers in a CSS file.

Consider this example:

1 <button class="btn" id="my_btn">Click</button>

In CSS:

1 @layer one {
2 #my_btn {
3 background-color: blue;
4 }
5 }
6

7 @layer two {
8 .btn {
9 background-color: red

10 }
11 }

In the above example, we have defined two layers, one and two. The .btn class in the two layer
will override the #btn class in the one layer.

When using layers we don’t care about specificity, we only care about the order of the layers.
The layer that is defined later will override the properties of the layer that is defined earlier.
That is why the .btn class will override the #btn class in the above example.

In the example before we used the order in which the layers were written in our code. But we
can also define the order of the all the layers in the CSS file like this:

1 @layer one, two, three;

1

CSS Layers

Here we are defining the order of the layers. The three layer will have the highest precedence
and the one layer will have the lowest precedence. So even if you write the three layer first
in the CSS file, and the one layer last, the three layer will still have the highest precedence
because we have defined the order of the layers.

1 @layer three {
2 button {
3 background-color: green;
4 }
5 }
6

7 @layer one {
8 #my_btn {
9 background-color: blue

10 }
11 }
12

13 @layer two {
14 .btn {
15 background-color: red;
16 }
17 }

In the above example, the three layer will have the highest precedence and will override the
styles of the one and two layers.

But what if we have a CSS rule that is not defined in any layer? In that case, in that case that
rule will override all the layers. So, if we have a rule that is not defined in any layer, it will have
the highest precedence. It’s like that rule is in a layer that is defined after all the layers.

1 button{
2 background-color: yellow;
3 }
4

5 @layer three {
6 #my_btn {
7 background-color: blue;
8 }
9 }

In the above example, the button rule will override all the layers because it is not defined in
any layer.

1.1 Layer & !important

In layers, !important works the opposite way. The first layer that has the !important rule will
have the highest precedence. So, if we have a rule with !important in the one layer and a rule
with !important in the two layer, the rule in the one layer will have the highest precedence.

1 @layer one, two, three;
2

3 @layer three {

2

Layers in Tailwind CSS

4 button {
5 background-color: green !important;
6 }
7 }
8

9 @layer one {
10 button {
11 background-color: blue !important;
12 }
13 }
14

15 @layer two {
16 button {
17 background-color: red !important;
18 }
19 }
20

21 button {
22 background-color: yellow !important;
23 }

In the above example, the button rule in the one layer will have the highest precedence because
it has the !important rule.

See these two images for a better understanding:

Figure 1: Layer Precedence

Figure 2: Important Precedence With Layers

Layers concept is used with tailwind CSS and that is what we will talk about next.

2 Layers in Tailwind CSS
When you start using Tailwind CSS, you will need to add those three lines at the beginning of
your CSS file:

3

Layers in Tailwind CSS

1 @tailwind base;
2 @tailwind components;
3 @tailwind utilities;

Those three lines are the layers in Tailwind CSS. The base layer contains the base styles, the
components layer contains the components styles, and the utilities layer contains the utility
classes.

The same rules apply to the layers in Tailwind CSS. The base layer has the lowest precedence,
the components layer has the middle precedence, and the utilities layer has the highest
precedence. That is why when you define a utility class, it will override the components and
base styles.

You can also add styles to existing layers or create new layers in Tailwind CSS. You can do that
by using the @layer directive.

1 @tailwind base;
2 @tailwind components;
3 @tailwind utilities;
4

5 @layer base {
6 button {
7 background-color: blue;
8 }
9 }

In the above example, we have added a new style to the base layer, so any button in the HTML
file will have a blue background color unless it is overridden by a utility class. You can do the
same width the components and utilities layers.

Now you can make your own new utility classes and add them to the utilities layer.

1 @layer utilities {
2 .btn-warning {
3 background-color: orange;
4 }
5 }

2.1 @apply Directive
Not only that you can also use Tailwind classes inside the @layer directive using @apply
directive.

1 @layer utilities {
2 .btn-warning {
3 @apply bg-orange-500 text-white rounded-md px-4 py-2;
4 }
5 }

Now using btn-warning will be equivalent to using bg-orange-500 text-white rounded-md
px-4 py-2.

4

Responsive Tailwind Example

3 @config Directive
You can also use the @config directive to change the configuration of Tailwind CSS. This is
useful if you have a large project and you want to apply different configurations to different
users or different parts of the project.

For example this applies a configuration file for main site:

1 @config "./tailwind.site.config.js";
2

3 @tailwind base;
4 @tailwind components;
5 @tailwind utilities;

And this for admins:

1 @config "./tailwind.admin.config.js";
2

3 @import "tailwindcss/base";
4 @import "tailwindcss/components";
5 @import "tailwindcss/utilities";

4 theme(), screens() Functions
theme() is a function that allows you to access the theme configuration values in Tailwind CSS
configuration file. You can use it to access the colors, fonts, spacing, and other configurations
values in the theme.

5 Responsive Tailwind Example
1 <div class="flex flex-wrap">
2 <div
3 class="shadow-lg p-3 md:w-6/12 md:bg-red-300 md:font-mono lg:w-4/12">
4 <p>Lorem, ipsum dolor.</p>
5 </div>
6 <div
7 class="shadow-lg p-3 md:w-6/12 md:bg-red-300 md:font-mono lg:w-4/12">
8 <p>Lorem, ipsum dolor.</p>
9 </div>

10 <div
11 class="shadow-lg p-3 md:w-6/12 md:bg-red-300 md:font-mono lg:w-4/12">
12 <p>Lorem, ipsum dolor.</p>
13 </div>
14 <div
15 class="shadow-lg p-3 md:w-6/12 md:bg-red-300 md:font-mono lg:w-4/12">
16 <p>Lorem, ipsum dolor.</p>
17 </div>
18 </div>

In the example above we have a responsive layout. The md prefix means that the style will
be applied on medium screens and larger. The lg prefix means that the style will be applied
on large screens and larger. md:w-6/12 means that the width of the element will be 50% on

5

Dark Mode

medium screens and larger. md:bg-red-300 means that the background color of the element
will be red on medium screens and larger. md:font-mono means that the font of the element
will be monospace on medium screens and larger.

lg:w-4/12 means that the width of the element will be 33.33% on large screens and larger.

You can add custom screen sizes to tailwind to the existing ones like sm, md, lg, xl by using
screens in the configuration file.

1 /** @type {import('tailwindcss').Config} */
2 /** @type {import('tailwindcss').Config} */
3 module.exports = {
4 theme: {
5 extend: {
6 screens: {
7 'tablet': '640px',
8 // => @media (min-width: 640px) { ... }
9

10 'laptop': '1024px',
11 // => @media (min-width: 1024px) { ... }
12

13 'desktop': '1280px',
14 // => @media (min-width: 1280px) { ... }
15 },
16 }
17 }
18 }

So now you can use tablet, laptop, and desktop as screen sizes in your CSS in addition to
the existing ones.

You can also use arbitrary values:

1 <div class="min-[320px]:text-center max-[600px]:bg-sky-300">
2 <!-- ... -->
3 </div>

In the example above, the text will be centered if the screen width is at 320px or more and the
background color will be sky-300 if the screen width is 600px or less.

If you have the Tailwind VSCode extension installed, you will see the CSS values of these classes
if you hover over them.

6 Dark Mode
To use darkmode in tailwind you need to specify darkMode: 'class' in the configuration file.

1 /** @type {import('tailwindcss').Config} */
2 module.exports = {
3 darkMode: 'class',
4 // ...
5 }

6

Tailwind Plugins

Now if you add dark class to the html element, the dark mode will be activated.

1 <html class="dark">

To add dark mode styles, you can use the dark: prefix.

1 <div class="bg-white dark:bg-gray-800">
2 <!-- ... -->
3 </div>

In the example above, the background color will be white in light mode and gray-800 in dark
mode.

You can use a toggle button to switch between light and dark mode, and add even listeners in
JavaScript to toggle the dark class on the html element.

1 <input type="checkbox" name="light-switch" class="light-switch" />

1 const lightSwitch = document.querySelector('.light-switch');
2

3 lightSwitch.addEventListener('change', () => {
4 document.documentElement.classList.toggle('dark');
5 });

7 Tailwind Plugins
You can add plugins to Tailwind CSS to extend its functionality. You can add plugins to add
new utilities, components, or styles.

Tailwind has some official plugins that you can use. You can find them here.

Example using @tailwindcss/typography plugin:

First install the plugin via npm: npm install -D @tailwindcss/typography

Then add require('@tailwindcss/typography' to the plugins array in the configuration file.

1 /** @type {import('tailwindcss').Config} */
2 module.exports = {
3 plugins: [
4 require('@tailwindcss/typography')
5],
6 // ...
7 }

Now you can use the typography plugin in your CSS.

1 <article class="prose lg:prose-xl">
2 <h1>Garlic bread with cheese: What the science tells us</h1>
3 <p>
4 For years parents have espoused the health benefits of eating garlic

bread with cheese to their↪→

5 children, with the food earning such an iconic status in our culture
that kids will often dress↪→

6 up as warm, cheesy loaf for Halloween.
7 </p>
8 <p>

7

https://tailwindcss.com/docs/plugins

Some Tailwind Utilities

9 But a recent study shows that the celebrated appetizer may be linked to
a series of rabies cases↪→

10 springing up around the country.
11 </p>
12 <!-- ... -->
13 </article>

In the example above, we are using the prose class from the typography plugin to style the
text.

To know how to use each plugin check its README file on GitHub.

8 Some Tailwind Utilities
We have some classes related font-family like:

• font-sans

• font-serif

• font-mono

We have some classes related to font-size like:

• text-xs

• text-sm

• text-base

• text-lg

• text-xl

And more. See the documentation for more information.

We have font-style classes like:

• italic

• not-italic

We have font-weight classes like:

• font-thin

• font-light

• font-normal

• font-medium

• font-semibold

• font-bold

• font-extrabold

• font-black

We have line-clamp which will truncate the text after a certain number of lines:

• line-clamp-1

8

https://tailwindcss.com/docs/font-size

Some Tailwind Utilities

• line-clamp-2

• line-clamp-3

And more. See the documentation for more information.

We have bg-[url('./path/to/img')] to set the background image of an element, But Notice
that the path is relative to the output CSS file not the HTML file.

You can also define a custom image in the configuration file:

1 /** @type {import('tailwindcss').Config} */
2 module.exports = {
3 theme: {
4 extend: {
5 backgroundImage: {
6 'main': "url('./path/to/img')" // Path is relative to CSS file too
7 }
8 }
9 }

10 }

And then use it like this:

1 <div class="bg-main">
2 <!-- ... -->
3 </div>

To change the opacity of the background image you can use bg-color/[opacity], for example
bg-green-600/20 will set the background color to green-600 with an opacity of 20%.

We also have divide utilities to add dividers between elements, the dividers are borders:

• divide-x

• divide-y

• divide-x-reverse

• divide-y-reverse

Divide work similar to space utilities, you can use divide-[width] to set the width of the
divider and divide-[color] to set the color of the divider.

We have also mix blend modes, which are used to blend the element with the background: See
the documentation for more information.

We also have transition utilities you can see the documentation for more information.

We also have transform utilities you can see the documentation for more information.

We also have animation utilities you can see the documentation for more information.

9

https://tailwindcss.com/docs/line-clamp
https://tailwindcss.com/docs/mix-blend-mode
https://tailwindcss.com/docs/transition-property
https://tailwindcss.com/docs/transform
https://tailwindcss.com/docs/animation

	Introduction
	Some HTML Tags and Their Syntax
	SEO (Search Engine Optimization)
	Image Tag
	Anchor Tag
	Lists
	Ordered List
	Unordered List

	Tables

	Summary
	Tag
	Attribute

	HTML Forms
	Type Attribute
	Button
	Radio Buttons & Checkboxes
	Textarea
	Select Option
	Datalist
	Input Validation

	Extra Information
	Summary
	Tags
	Attributes
	Input Types

	Review & Questions
	CSS
	General look of a CSS Rule
	Where should CSS code be? & How to link it?
	Inline CSS
	Internal CSS
	External CSS file

	Why to separate CSS from HTML?
	If we have different styles for the same element, what would happen?
	Selectors
	Tag
	Class
	ID
	Grouping

	Specificity
	Some Styling Properties
	Block & Inline Elements
	Block-level elements
	Inline elements
	Inline-block

	Replaced Elements

	Summary
	Review & Questions
	Cont. CSS
	Float & Clear
	Float
	Clear

	Margin & Padding
	Margin Collapse

	Dealing with Fonts in CSS
	Background

	Summary
	Cont. CSS
	Border
	CSS Sprites
	Background Clip
	Viewport Units
	Position
	Stacking context

	Absolute Position
	Some CSS Properties
	Box Sizing
	Hover
	Transition
	Transform
	Overflow

	IFrame
	Important Exercise
	Summary
	Shadow property
	Gradient
	Before and After pseudo-elements
	Selection
	Animation
	media queries
	Flex Display
	Flex Direction
	Flex Wrap
	Flex Flow
	Order
	Placing flex items
	Row & Column Gaps
	Grow & Shrink
	Flex Basis
	Flex Shorthand

	Grid Layout
	Display grid
	Grid Template Columns
	Grid Template Rows
	Grid Template Shorthand Property
	What is the difference between auto and fr?
	Repeat function
	Grid Template Areas
	Item Placement
	All Items
	Single Item

	Grid Gap
	Implicit Vs Explicit Grid
	Minmax function
	Cell Spanning
	Naming Rows and Columns
	Parent Vs Child Properties
	Websites to Help You Create Grid Layouts

	CSS Variables
	Summary
	Grid Layout
	auto vs. fr
	Grid Template Areas
	Item Placement
	Grid Gap
	Implicit vs. Explicit Grid
	Cell Spanning
	Naming Rows & Columns
	Parent vs. Child Properties
	Sites for Creating Grid Layouts
	CSS Variables

	Psuedo Classes
	CSS Combinators
	Some Extra Selectors
	Attribute Selectors

	Extra CSS Properties
	Scroll Behavior
	Object Fit
	Nesting Selectors
	Important Property
	Inherit and Initial

	Solving Compatibility Issues
	CSS

	Semantic HTML
	Font Awesome Icons
	Summary
	rem & em Units
	rem
	em
	Which unit is better with each property?

	Calc Function
	Bootstrap
	What is Bootstrap?
	What is the difference between library and framework?
	How to use Bootstrap?
	Downloading Bootstrap
	Using CDN

	Some Questions
	What to do if you want to change the default Bootstrap styles?
	Sizing in Bootstrap
	Colors in Bootstrap
	Alignment
	Text in Bootstrap
	Font Size

	Font Style
	Font Weight
	Text Transform
	Line Height

	Bootstrap Cont
	Screen Sizes
	Containers

	Flex Display
	Offset
	Min and Max Width

	Summary
	Inside head tag
	Other
	Lighthouse
	Video & Audio Tags
	Video
	Audio

	JavaScript
	where to write JS code
	Operators In JavaScript
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators

	Conditional Statements
	If Statement
	Else Statement
	Else If Statement
	Nesting If Statement
	Switch Statement
	Nested Switch Statement
	Falsey Values

	Loops
	For Loop
	While Loop
	Do While Loop
	Using Loops With HTML Elements

	Summary
	Implicit Conversion
	Function
	Return Value
	Function Types
	Declaration Function
	Expression Function

	User Input
	Some Interview Notes
	Hoisting
	Hoisting With Function Types
	Declaration Functions Hoisting
	Expression Functions Hoisting

	Scope
	Global Scope
	Local Scope
	Qestions

	Self Inovked Function
	Object
	JS Built-in Objects
	window
	document
	console
	Math

	Array
	Object vs Array
	Functional Programming in JS
	Summary
	Built-in Array Methods
	push
	unshift
	pop
	shift
	splice
	slice
	includes
	indexOf & lastIndexOf

	Exercise
	CRUD Operations
	Summary
	Local Storage
	Session Storage
	Storing Objects
	Accepting Image As Input
	String Methods
	charAt(), [], at()
	slice()
	substring()
	toUpperCase(), toLowerCase()
	toLocaleUpperCase(), toLocaleLowerCase()
	includes()
	concat()
	trim(), trimStart(), trimEnd()
	split()
	join()
	repeat()
	replace(), replaceAll()
	padStart(), padEnd()

	Searching in CRUD System
	Real-time Search
	Search Button
	Example of Real-time Search CRUD System

	Summary
	DOM (Document Object Model)
	Selecting Elements in the DOM
	Event Listeners
	Event Object
	Some Common Events
	Changing Element Styles
	Example of Making an Element Draggable

	Get, Set, and Remove Attributes
	Class List
	Summary
	Image Slider Examples
	Event Propagation
	Stop Propagation

	Regular Expressions (Regex)
	Example Regular Expressions With Explanation
	Real-World Regex Examples
	Some Characters Used in Regex
	Some Regex Flags
	How to Use Regex
	Example Regex With User Input

	Operators
	Conditional (Ternary) Operator
	Nullish Coalescing Operator
	Chaining Operator

	Extras
	Summary
	innerHTML and innerText
	innerHTML
	innerText

	Creating Elements
	Appending & Prepending Elements (Child)
	Add Element Before or After Another (Sibling)

	Traversing the DOM
	Important Differences
	previousSibling, nextSibling VS previousElementSibling, nextElementSibling
	NodeList VS HTML Collection

	Browser Object Model (BOM)
	DOM VS BOM
	BOM Methods & Properties
	setInterval
	clearInterval
	setTimeout
	alert
	open
	close
	innerWidth and innerHeight
	screen Object

	location Object

	API
	JSON
	Free APIs
	Terms Related to APIs
	How to Use an API
	Displaying Data from an API

	Summary
	Synchrounous & Asynchronous
	How JavaScript Works

	Control Code Execution Flow
	Callbacks
	Callback Hell

	Promise
	Promise Chaining

	Async/Await
	Fetch API
	Using Async/Await

	try, catch, and finally
	Summary
	"use strict"
	let and const
	let
	const
	for of & const

	Default Parameter Value
	Template Literal `String`
	Destruction Assignment
	Array Destructuring
	Object Destructuring

	this Keyword
	this In A Function Inside An Object Method

	Arrow Functions
	this & Arrow Functions

	Set
	Set & Array
	Set Methods
	add
	size
	has
	delete

	Map
	Map & Object
	Map Methods
	set
	size
	keys & values
	has
	delete
	clear
	entries

	Map Iteration
	Iterating Over Entries
	Iterating Over Keys
	Iterating Over Values
	Iterating With Destructuring

	Summary
	Spread Operator
	Spread in Arrays
	Spread in Objects
	Rest Parameter

	Shallow Copy vs Deep Copy
	Shallow Copy
	Deep Copy
	Rest Parameter in Deep Copy
	Non-Primitive Values Inside Non-Primitive Values
	Deep Copy Using JSON.parse and JSON.stringify
	Deep Copy Using structuredClone

	Higher-Order Functions
	forEach
	map
	filter
	reduce
	find

	Prototype
	Prototypal Inheritance
	Object

	Summary
	Revision
	Higher Order Functions
	Prototype

	Object Oriented Programming (OOP)
	Class based OOP
	Prototype based OOP
	Constructor Functions
	Sugar Syntax

	Main OOP Concepts
	Inheritance
	Polymorphism
	Access Modifiers

	Modules
	Summary
	Revision
	JQuery
	Library vs Framework
	Why JQuery?
	How to use JQuery?

	How to use JQuery?
	Selecting elements
	Effects
	Effects With Callbacks
	Custom Effects With animate()

	DOM Manipulation With JQuery
	Get and Set
	Text Content
	HTML Content
	Input Value
	Attribute
	CSS
	Width, Height

	Add and Remove
	Elements
	Classes
	Attributes

	Traversing
	Example Website
	Some Notes
	Packge Manager (npm)
	Closure
	NPM Continued
	Tailwind CSS
	Tailwind Colors
	Tailwind Spacing
	Spacing Between Elements
	Width and Height
	Width
	Height

	Size
	Hover, Focus, and Active
	Valid and Invalid
	Required & Disabled
	First & Last Child
	Even & Odd
	Hovering on Parent Affected Child
	Peer
	Container
	Background

	CSS Layers
	Layer & !important

	Layers in Tailwind CSS
	@apply Directive

	@config Directive
	theme(), screens() Functions
	Responsive Tailwind Example
	Dark Mode
	Tailwind Plugins
	Some Tailwind Utilities

